u-boot/drivers/i2c/stm32f7_i2c.c

972 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2017 STMicroelectronics
*/
#define LOG_CATEGORY UCLASS_I2C
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <i2c.h>
#include <log.h>
#include <regmap.h>
#include <reset.h>
#include <syscon.h>
#include <dm/device.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
/* STM32 I2C registers */
struct stm32_i2c_regs {
u32 cr1; /* I2C control register 1 */
u32 cr2; /* I2C control register 2 */
u32 oar1; /* I2C own address 1 register */
u32 oar2; /* I2C own address 2 register */
u32 timingr; /* I2C timing register */
u32 timeoutr; /* I2C timeout register */
u32 isr; /* I2C interrupt and status register */
u32 icr; /* I2C interrupt clear register */
u32 pecr; /* I2C packet error checking register */
u32 rxdr; /* I2C receive data register */
u32 txdr; /* I2C transmit data register */
};
#define STM32_I2C_CR1 0x00
#define STM32_I2C_CR2 0x04
#define STM32_I2C_TIMINGR 0x10
#define STM32_I2C_ISR 0x18
#define STM32_I2C_ICR 0x1C
#define STM32_I2C_RXDR 0x24
#define STM32_I2C_TXDR 0x28
/* STM32 I2C control 1 */
#define STM32_I2C_CR1_ANFOFF BIT(12)
#define STM32_I2C_CR1_DNF_MASK GENMASK(11, 8)
#define STM32_I2C_CR1_DNF(n) (((n) & 0xf) << 8)
#define STM32_I2C_CR1_ERRIE BIT(7)
#define STM32_I2C_CR1_TCIE BIT(6)
#define STM32_I2C_CR1_STOPIE BIT(5)
#define STM32_I2C_CR1_NACKIE BIT(4)
#define STM32_I2C_CR1_ADDRIE BIT(3)
#define STM32_I2C_CR1_RXIE BIT(2)
#define STM32_I2C_CR1_TXIE BIT(1)
#define STM32_I2C_CR1_PE BIT(0)
/* STM32 I2C control 2 */
#define STM32_I2C_CR2_AUTOEND BIT(25)
#define STM32_I2C_CR2_RELOAD BIT(24)
#define STM32_I2C_CR2_NBYTES_MASK GENMASK(23, 16)
#define STM32_I2C_CR2_NBYTES(n) ((n & 0xff) << 16)
#define STM32_I2C_CR2_NACK BIT(15)
#define STM32_I2C_CR2_STOP BIT(14)
#define STM32_I2C_CR2_START BIT(13)
#define STM32_I2C_CR2_HEAD10R BIT(12)
#define STM32_I2C_CR2_ADD10 BIT(11)
#define STM32_I2C_CR2_RD_WRN BIT(10)
#define STM32_I2C_CR2_SADD10_MASK GENMASK(9, 0)
#define STM32_I2C_CR2_SADD10(n) (n & STM32_I2C_CR2_SADD10_MASK)
#define STM32_I2C_CR2_SADD7_MASK GENMASK(7, 1)
#define STM32_I2C_CR2_SADD7(n) ((n & 0x7f) << 1)
#define STM32_I2C_CR2_RESET_MASK (STM32_I2C_CR2_HEAD10R \
| STM32_I2C_CR2_NBYTES_MASK \
| STM32_I2C_CR2_SADD7_MASK \
| STM32_I2C_CR2_RELOAD \
| STM32_I2C_CR2_RD_WRN)
/* STM32 I2C Interrupt Status */
#define STM32_I2C_ISR_BUSY BIT(15)
#define STM32_I2C_ISR_ARLO BIT(9)
#define STM32_I2C_ISR_BERR BIT(8)
#define STM32_I2C_ISR_TCR BIT(7)
#define STM32_I2C_ISR_TC BIT(6)
#define STM32_I2C_ISR_STOPF BIT(5)
#define STM32_I2C_ISR_NACKF BIT(4)
#define STM32_I2C_ISR_ADDR BIT(3)
#define STM32_I2C_ISR_RXNE BIT(2)
#define STM32_I2C_ISR_TXIS BIT(1)
#define STM32_I2C_ISR_TXE BIT(0)
#define STM32_I2C_ISR_ERRORS (STM32_I2C_ISR_BERR \
| STM32_I2C_ISR_ARLO)
/* STM32 I2C Interrupt Clear */
#define STM32_I2C_ICR_ARLOCF BIT(9)
#define STM32_I2C_ICR_BERRCF BIT(8)
#define STM32_I2C_ICR_STOPCF BIT(5)
#define STM32_I2C_ICR_NACKCF BIT(4)
/* STM32 I2C Timing */
#define STM32_I2C_TIMINGR_PRESC(n) ((n & 0xf) << 28)
#define STM32_I2C_TIMINGR_SCLDEL(n) ((n & 0xf) << 20)
#define STM32_I2C_TIMINGR_SDADEL(n) ((n & 0xf) << 16)
#define STM32_I2C_TIMINGR_SCLH(n) ((n & 0xff) << 8)
#define STM32_I2C_TIMINGR_SCLL(n) (n & 0xff)
#define STM32_I2C_MAX_LEN 0xff
#define STM32_I2C_DNF_MAX 15
#define STM32_I2C_ANALOG_FILTER_DELAY_MIN 50 /* ns */
#define STM32_I2C_ANALOG_FILTER_DELAY_MAX 260 /* ns */
#define STM32_I2C_RISE_TIME_DEFAULT 25 /* ns */
#define STM32_I2C_FALL_TIME_DEFAULT 10 /* ns */
#define STM32_PRESC_MAX BIT(4)
#define STM32_SCLDEL_MAX BIT(4)
#define STM32_SDADEL_MAX BIT(4)
#define STM32_SCLH_MAX BIT(8)
#define STM32_SCLL_MAX BIT(8)
#define STM32_NSEC_PER_SEC 1000000000L
/**
* struct stm32_i2c_spec - private i2c specification timing
* @rate: I2C bus speed (Hz)
* @rate_min: 80% of I2C bus speed (Hz)
* @rate_max: 120% of I2C bus speed (Hz)
* @fall_max: Max fall time of both SDA and SCL signals (ns)
* @rise_max: Max rise time of both SDA and SCL signals (ns)
* @hddat_min: Min data hold time (ns)
* @vddat_max: Max data valid time (ns)
* @sudat_min: Min data setup time (ns)
* @l_min: Min low period of the SCL clock (ns)
* @h_min: Min high period of the SCL clock (ns)
*/
struct stm32_i2c_spec {
u32 rate;
u32 rate_min;
u32 rate_max;
u32 fall_max;
u32 rise_max;
u32 hddat_min;
u32 vddat_max;
u32 sudat_min;
u32 l_min;
u32 h_min;
};
/**
* struct stm32_i2c_setup - private I2C timing setup parameters
* @speed_freq: I2C speed frequency (Hz)
* @clock_src: I2C clock source frequency (Hz)
* @rise_time: Rise time (ns)
* @fall_time: Fall time (ns)
* @dnf: value of digital filter to apply
* @analog_filter: Analog filter delay (On/Off)
*/
struct stm32_i2c_setup {
u32 speed_freq;
u32 clock_src;
u32 rise_time;
u32 fall_time;
u8 dnf;
bool analog_filter;
};
/**
* struct stm32_i2c_data - driver data for I2C configuration by compatible
* @fmp_clr_offset: Fast Mode Plus clear register offset from set register
*/
struct stm32_i2c_data {
u32 fmp_clr_offset;
};
/**
* struct stm32_i2c_timings - private I2C output parameters
* @prec: Prescaler value
* @scldel: Data setup time
* @sdadel: Data hold time
* @sclh: SCL high period (master mode)
* @sclh: SCL low period (master mode)
*/
struct stm32_i2c_timings {
struct list_head node;
u8 presc;
u8 scldel;
u8 sdadel;
u8 sclh;
u8 scll;
};
/**
* struct stm32_i2c_priv - private data of the controller
* @regs: I2C registers address
* @clk: hw i2c clock
* @setup: I2C timing setup parameters
* @speed: I2C clock frequency of the controller. Standard, Fast or Fast+
* @regmap: holds SYSCFG phandle for Fast Mode Plus bit
* @regmap_sreg: register address for setting Fast Mode Plus bits
* @regmap_creg: register address for clearing Fast Mode Plus bits
* @regmap_mask: mask for Fast Mode Plus bits
* @dnf_dt: value of digital filter requested via dt
*/
struct stm32_i2c_priv {
struct stm32_i2c_regs *regs;
struct clk clk;
struct stm32_i2c_setup setup;
u32 speed;
struct regmap *regmap;
u32 regmap_sreg;
u32 regmap_creg;
u32 regmap_mask;
u32 dnf_dt;
};
static const struct stm32_i2c_spec i2c_specs[] = {
/* Standard speed - 100 KHz */
[IC_SPEED_MODE_STANDARD] = {
.rate = I2C_SPEED_STANDARD_RATE,
.rate_min = 8000,
.rate_max = 120000,
.fall_max = 300,
.rise_max = 1000,
.hddat_min = 0,
.vddat_max = 3450,
.sudat_min = 250,
.l_min = 4700,
.h_min = 4000,
},
/* Fast speed - 400 KHz */
[IC_SPEED_MODE_FAST] = {
.rate = I2C_SPEED_FAST_RATE,
.rate_min = 320000,
.rate_max = 480000,
.fall_max = 300,
.rise_max = 300,
.hddat_min = 0,
.vddat_max = 900,
.sudat_min = 100,
.l_min = 1300,
.h_min = 600,
},
/* Fast Plus Speed - 1 MHz */
[IC_SPEED_MODE_FAST_PLUS] = {
.rate = I2C_SPEED_FAST_PLUS_RATE,
.rate_min = 800000,
.rate_max = 1200000,
.fall_max = 100,
.rise_max = 120,
.hddat_min = 0,
.vddat_max = 450,
.sudat_min = 50,
.l_min = 500,
.h_min = 260,
},
};
static const struct stm32_i2c_data stm32f7_data = {
.fmp_clr_offset = 0x00,
};
static const struct stm32_i2c_data stm32mp15_data = {
.fmp_clr_offset = 0x40,
};
static int stm32_i2c_check_device_busy(struct stm32_i2c_priv *i2c_priv)
{
struct stm32_i2c_regs *regs = i2c_priv->regs;
u32 status = readl(&regs->isr);
if (status & STM32_I2C_ISR_BUSY)
return -EBUSY;
return 0;
}
static void stm32_i2c_message_start(struct stm32_i2c_priv *i2c_priv,
struct i2c_msg *msg, bool stop)
{
struct stm32_i2c_regs *regs = i2c_priv->regs;
u32 cr2 = readl(&regs->cr2);
/* Set transfer direction */
cr2 &= ~STM32_I2C_CR2_RD_WRN;
if (msg->flags & I2C_M_RD)
cr2 |= STM32_I2C_CR2_RD_WRN;
/* Set slave address */
cr2 &= ~(STM32_I2C_CR2_HEAD10R | STM32_I2C_CR2_ADD10);
if (msg->flags & I2C_M_TEN) {
cr2 &= ~STM32_I2C_CR2_SADD10_MASK;
cr2 |= STM32_I2C_CR2_SADD10(msg->addr);
cr2 |= STM32_I2C_CR2_ADD10;
} else {
cr2 &= ~STM32_I2C_CR2_SADD7_MASK;
cr2 |= STM32_I2C_CR2_SADD7(msg->addr);
}
/* Set nb bytes to transfer and reload or autoend bits */
cr2 &= ~(STM32_I2C_CR2_NBYTES_MASK | STM32_I2C_CR2_RELOAD |
STM32_I2C_CR2_AUTOEND);
if (msg->len > STM32_I2C_MAX_LEN) {
cr2 |= STM32_I2C_CR2_NBYTES(STM32_I2C_MAX_LEN);
cr2 |= STM32_I2C_CR2_RELOAD;
} else {
cr2 |= STM32_I2C_CR2_NBYTES(msg->len);
}
/* Write configurations register */
writel(cr2, &regs->cr2);
/* START/ReSTART generation */
setbits_le32(&regs->cr2, STM32_I2C_CR2_START);
}
/*
* RELOAD mode must be selected if total number of data bytes to be
* sent is greater than MAX_LEN
*/
static void stm32_i2c_handle_reload(struct stm32_i2c_priv *i2c_priv,
struct i2c_msg *msg, bool stop)
{
struct stm32_i2c_regs *regs = i2c_priv->regs;
u32 cr2 = readl(&regs->cr2);
cr2 &= ~STM32_I2C_CR2_NBYTES_MASK;
if (msg->len > STM32_I2C_MAX_LEN) {
cr2 |= STM32_I2C_CR2_NBYTES(STM32_I2C_MAX_LEN);
} else {
cr2 &= ~STM32_I2C_CR2_RELOAD;
cr2 |= STM32_I2C_CR2_NBYTES(msg->len);
}
writel(cr2, &regs->cr2);
}
static int stm32_i2c_wait_flags(struct stm32_i2c_priv *i2c_priv,
u32 flags, u32 *status)
{
struct stm32_i2c_regs *regs = i2c_priv->regs;
u32 time_start = get_timer(0);
*status = readl(&regs->isr);
while (!(*status & flags)) {
if (get_timer(time_start) > CONFIG_SYS_HZ) {
log_debug("i2c timeout\n");
return -ETIMEDOUT;
}
*status = readl(&regs->isr);
}
return 0;
}
static int stm32_i2c_check_end_of_message(struct stm32_i2c_priv *i2c_priv)
{
struct stm32_i2c_regs *regs = i2c_priv->regs;
u32 mask = STM32_I2C_ISR_ERRORS | STM32_I2C_ISR_NACKF |
STM32_I2C_ISR_STOPF;
u32 status;
int ret;
ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
if (ret)
return ret;
if (status & STM32_I2C_ISR_BERR) {
log_debug("Bus error\n");
/* Clear BERR flag */
setbits_le32(&regs->icr, STM32_I2C_ICR_BERRCF);
return -EIO;
}
if (status & STM32_I2C_ISR_ARLO) {
log_debug("Arbitration lost\n");
/* Clear ARLO flag */
setbits_le32(&regs->icr, STM32_I2C_ICR_ARLOCF);
return -EAGAIN;
}
if (status & STM32_I2C_ISR_NACKF) {
log_debug("Receive NACK\n");
/* Clear NACK flag */
setbits_le32(&regs->icr, STM32_I2C_ICR_NACKCF);
/* Wait until STOPF flag is set */
mask = STM32_I2C_ISR_STOPF;
ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
if (ret)
return ret;
ret = -EIO;
}
if (status & STM32_I2C_ISR_STOPF) {
/* Clear STOP flag */
setbits_le32(&regs->icr, STM32_I2C_ICR_STOPCF);
/* Clear control register 2 */
setbits_le32(&regs->cr2, STM32_I2C_CR2_RESET_MASK);
}
return ret;
}
static int stm32_i2c_message_xfer(struct stm32_i2c_priv *i2c_priv,
struct i2c_msg *msg, bool stop)
{
struct stm32_i2c_regs *regs = i2c_priv->regs;
u32 status;
u32 mask = msg->flags & I2C_M_RD ? STM32_I2C_ISR_RXNE :
STM32_I2C_ISR_TXIS | STM32_I2C_ISR_NACKF;
int bytes_to_rw = msg->len > STM32_I2C_MAX_LEN ?
STM32_I2C_MAX_LEN : msg->len;
int ret = 0;
/* Add errors */
mask |= STM32_I2C_ISR_ERRORS;
stm32_i2c_message_start(i2c_priv, msg, stop);
while (msg->len) {
/*
* Wait until TXIS/NACKF/BERR/ARLO flags or
* RXNE/BERR/ARLO flags are set
*/
ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
if (ret)
break;
if (status & (STM32_I2C_ISR_NACKF | STM32_I2C_ISR_ERRORS))
break;
if (status & STM32_I2C_ISR_RXNE) {
*msg->buf++ = readb(&regs->rxdr);
msg->len--;
bytes_to_rw--;
}
if (status & STM32_I2C_ISR_TXIS) {
writeb(*msg->buf++, &regs->txdr);
msg->len--;
bytes_to_rw--;
}
if (!bytes_to_rw && msg->len) {
/* Wait until TCR flag is set */
mask = STM32_I2C_ISR_TCR;
ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
if (ret)
break;
bytes_to_rw = msg->len > STM32_I2C_MAX_LEN ?
STM32_I2C_MAX_LEN : msg->len;
mask = msg->flags & I2C_M_RD ? STM32_I2C_ISR_RXNE :
STM32_I2C_ISR_TXIS | STM32_I2C_ISR_NACKF;
stm32_i2c_handle_reload(i2c_priv, msg, stop);
} else if (!bytes_to_rw) {
/* Wait until TC flag is set */
mask = STM32_I2C_ISR_TC;
ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
if (ret)
break;
if (!stop)
/* Message sent, new message has to be sent */
return 0;
}
}
/* End of transfer, send stop condition */
mask = STM32_I2C_CR2_STOP;
setbits_le32(&regs->cr2, mask);
return stm32_i2c_check_end_of_message(i2c_priv);
}
static int stm32_i2c_xfer(struct udevice *bus, struct i2c_msg *msg,
int nmsgs)
{
struct stm32_i2c_priv *i2c_priv = dev_get_priv(bus);
int ret;
ret = stm32_i2c_check_device_busy(i2c_priv);
if (ret)
return ret;
for (; nmsgs > 0; nmsgs--, msg++) {
ret = stm32_i2c_message_xfer(i2c_priv, msg, nmsgs == 1);
if (ret)
return ret;
}
return 0;
}
static int stm32_i2c_compute_solutions(u32 i2cclk,
struct stm32_i2c_setup *setup,
const struct stm32_i2c_spec *specs,
struct list_head *solutions)
{
struct stm32_i2c_timings *v;
u32 p_prev = STM32_PRESC_MAX;
u32 af_delay_min, af_delay_max;
u16 p, l, a;
int sdadel_min, sdadel_max, scldel_min;
int ret = 0;
af_delay_min = setup->analog_filter ?
STM32_I2C_ANALOG_FILTER_DELAY_MIN : 0;
af_delay_max = setup->analog_filter ?
STM32_I2C_ANALOG_FILTER_DELAY_MAX : 0;
sdadel_min = specs->hddat_min + setup->fall_time -
af_delay_min - (setup->dnf + 3) * i2cclk;
sdadel_max = specs->vddat_max - setup->rise_time -
af_delay_max - (setup->dnf + 4) * i2cclk;
scldel_min = setup->rise_time + specs->sudat_min;
if (sdadel_min < 0)
sdadel_min = 0;
if (sdadel_max < 0)
sdadel_max = 0;
log_debug("SDADEL(min/max): %i/%i, SCLDEL(Min): %i\n",
sdadel_min, sdadel_max, scldel_min);
/* Compute possible values for PRESC, SCLDEL and SDADEL */
for (p = 0; p < STM32_PRESC_MAX; p++) {
for (l = 0; l < STM32_SCLDEL_MAX; l++) {
int scldel = (l + 1) * (p + 1) * i2cclk;
if (scldel < scldel_min)
continue;
for (a = 0; a < STM32_SDADEL_MAX; a++) {
int sdadel = (a * (p + 1) + 1) * i2cclk;
if (((sdadel >= sdadel_min) &&
(sdadel <= sdadel_max)) &&
(p != p_prev)) {
v = calloc(1, sizeof(*v));
if (!v)
return -ENOMEM;
v->presc = p;
v->scldel = l;
v->sdadel = a;
p_prev = p;
list_add_tail(&v->node, solutions);
break;
}
}
if (p_prev == p)
break;
}
}
if (list_empty(solutions)) {
log_err("no Prescaler solution\n");
ret = -EPERM;
}
return ret;
}
static int stm32_i2c_choose_solution(u32 i2cclk,
struct stm32_i2c_setup *setup,
const struct stm32_i2c_spec *specs,
struct list_head *solutions,
struct stm32_i2c_timings *s)
{
struct stm32_i2c_timings *v;
u32 i2cbus = DIV_ROUND_CLOSEST(STM32_NSEC_PER_SEC,
setup->speed_freq);
u32 clk_error_prev = i2cbus;
u32 clk_min, clk_max;
u32 af_delay_min;
u32 dnf_delay;
u32 tsync;
u16 l, h;
bool sol_found = false;
int ret = 0;
af_delay_min = setup->analog_filter ?
STM32_I2C_ANALOG_FILTER_DELAY_MIN : 0;
dnf_delay = setup->dnf * i2cclk;
tsync = af_delay_min + dnf_delay + (2 * i2cclk);
clk_max = STM32_NSEC_PER_SEC / specs->rate_min;
clk_min = STM32_NSEC_PER_SEC / specs->rate_max;
/*
* Among Prescaler possibilities discovered above figures out SCL Low
* and High Period. Provided:
* - SCL Low Period has to be higher than Low Period of the SCL Clock
* defined by I2C Specification. I2C Clock has to be lower than
* (SCL Low Period - Analog/Digital filters) / 4.
* - SCL High Period has to be lower than High Period of the SCL Clock
* defined by I2C Specification
* - I2C Clock has to be lower than SCL High Period
*/
list_for_each_entry(v, solutions, node) {
u32 prescaler = (v->presc + 1) * i2cclk;
for (l = 0; l < STM32_SCLL_MAX; l++) {
u32 tscl_l = (l + 1) * prescaler + tsync;
if (tscl_l < specs->l_min ||
(i2cclk >=
((tscl_l - af_delay_min - dnf_delay) / 4))) {
continue;
}
for (h = 0; h < STM32_SCLH_MAX; h++) {
u32 tscl_h = (h + 1) * prescaler + tsync;
u32 tscl = tscl_l + tscl_h +
setup->rise_time + setup->fall_time;
if ((tscl >= clk_min) && (tscl <= clk_max) &&
(tscl_h >= specs->h_min) &&
(i2cclk < tscl_h)) {
u32 clk_error;
if (tscl > i2cbus)
clk_error = tscl - i2cbus;
else
clk_error = i2cbus - tscl;
if (clk_error < clk_error_prev) {
clk_error_prev = clk_error;
v->scll = l;
v->sclh = h;
sol_found = true;
memcpy(s, v, sizeof(*s));
}
}
}
}
}
if (!sol_found) {
log_err("no solution at all\n");
ret = -EPERM;
}
return ret;
}
static const struct stm32_i2c_spec *get_specs(u32 rate)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(i2c_specs); i++)
if (rate <= i2c_specs[i].rate)
return &i2c_specs[i];
/* NOT REACHED */
return ERR_PTR(-EINVAL);
}
static int stm32_i2c_compute_timing(struct stm32_i2c_priv *i2c_priv,
struct stm32_i2c_timings *output)
{
struct stm32_i2c_setup *setup = &i2c_priv->setup;
const struct stm32_i2c_spec *specs;
struct stm32_i2c_timings *v, *_v;
struct list_head solutions;
u32 i2cclk = DIV_ROUND_CLOSEST(STM32_NSEC_PER_SEC, setup->clock_src);
int ret;
specs = get_specs(setup->speed_freq);
if (specs == ERR_PTR(-EINVAL)) {
log_err("speed out of bound {%d}\n",
setup->speed_freq);
return -EINVAL;
}
if (setup->rise_time > specs->rise_max ||
setup->fall_time > specs->fall_max) {
log_err("timings out of bound Rise{%d>%d}/Fall{%d>%d}\n",
setup->rise_time, specs->rise_max,
setup->fall_time, specs->fall_max);
return -EINVAL;
}
/* Analog and Digital Filters */
setup->dnf = DIV_ROUND_CLOSEST(i2c_priv->dnf_dt, i2cclk);
if (setup->dnf > STM32_I2C_DNF_MAX) {
log_err("DNF out of bound %d/%d\n",
setup->dnf, STM32_I2C_DNF_MAX);
return -EINVAL;
}
INIT_LIST_HEAD(&solutions);
ret = stm32_i2c_compute_solutions(i2cclk, setup, specs, &solutions);
if (ret)
goto exit;
ret = stm32_i2c_choose_solution(i2cclk, setup, specs, &solutions, output);
if (ret)
goto exit;
log_debug("Presc: %i, scldel: %i, sdadel: %i, scll: %i, sclh: %i\n",
output->presc,
output->scldel, output->sdadel,
output->scll, output->sclh);
exit:
/* Release list and memory */
list_for_each_entry_safe(v, _v, &solutions, node) {
list_del(&v->node);
free(v);
}
return ret;
}
static u32 get_lower_rate(u32 rate)
{
int i;
for (i = ARRAY_SIZE(i2c_specs) - 1; i >= 0; i--)
if (rate > i2c_specs[i].rate)
return i2c_specs[i].rate;
return i2c_specs[0].rate;
}
static int stm32_i2c_setup_timing(struct stm32_i2c_priv *i2c_priv,
struct stm32_i2c_timings *timing)
{
struct stm32_i2c_setup *setup = &i2c_priv->setup;
int ret = 0;
setup->speed_freq = i2c_priv->speed;
setup->clock_src = clk_get_rate(&i2c_priv->clk);
if (!setup->clock_src) {
log_err("clock rate is 0\n");
return -EINVAL;
}
do {
ret = stm32_i2c_compute_timing(i2c_priv, timing);
if (ret) {
log_debug("failed to compute I2C timings.\n");
if (setup->speed_freq > I2C_SPEED_STANDARD_RATE) {
setup->speed_freq =
get_lower_rate(setup->speed_freq);
log_debug("downgrade I2C Speed Freq to (%i)\n",
setup->speed_freq);
} else {
break;
}
}
} while (ret);
if (ret) {
log_err("impossible to compute I2C timings.\n");
return ret;
}
log_debug("I2C Freq(%i), Clk Source(%i)\n",
setup->speed_freq, setup->clock_src);
log_debug("I2C Rise(%i) and Fall(%i) Time\n",
setup->rise_time, setup->fall_time);
log_debug("I2C Analog Filter(%s), DNF(%i)\n",
setup->analog_filter ? "On" : "Off", setup->dnf);
i2c_priv->speed = setup->speed_freq;
return 0;
}
static int stm32_i2c_write_fm_plus_bits(struct stm32_i2c_priv *i2c_priv)
{
int ret;
bool enable = i2c_priv->speed > I2C_SPEED_FAST_RATE;
/* Optional */
if (IS_ERR_OR_NULL(i2c_priv->regmap))
return 0;
if (i2c_priv->regmap_sreg == i2c_priv->regmap_creg)
ret = regmap_update_bits(i2c_priv->regmap,
i2c_priv->regmap_sreg,
i2c_priv->regmap_mask,
enable ? i2c_priv->regmap_mask : 0);
else
ret = regmap_write(i2c_priv->regmap,
enable ? i2c_priv->regmap_sreg :
i2c_priv->regmap_creg,
i2c_priv->regmap_mask);
return ret;
}
static int stm32_i2c_hw_config(struct stm32_i2c_priv *i2c_priv)
{
struct stm32_i2c_regs *regs = i2c_priv->regs;
struct stm32_i2c_timings t;
int ret;
u32 timing = 0;
ret = stm32_i2c_setup_timing(i2c_priv, &t);
if (ret)
return ret;
/* Disable I2C */
clrbits_le32(&regs->cr1, STM32_I2C_CR1_PE);
/* Setup Fast mode plus if necessary */
ret = stm32_i2c_write_fm_plus_bits(i2c_priv);
if (ret)
return ret;
/* Timing settings */
timing |= STM32_I2C_TIMINGR_PRESC(t.presc);
timing |= STM32_I2C_TIMINGR_SCLDEL(t.scldel);
timing |= STM32_I2C_TIMINGR_SDADEL(t.sdadel);
timing |= STM32_I2C_TIMINGR_SCLH(t.sclh);
timing |= STM32_I2C_TIMINGR_SCLL(t.scll);
writel(timing, &regs->timingr);
/* Enable I2C */
if (i2c_priv->setup.analog_filter)
clrbits_le32(&regs->cr1, STM32_I2C_CR1_ANFOFF);
else
setbits_le32(&regs->cr1, STM32_I2C_CR1_ANFOFF);
/* Program the Digital Filter */
clrsetbits_le32(&regs->cr1, STM32_I2C_CR1_DNF_MASK,
STM32_I2C_CR1_DNF(i2c_priv->setup.dnf));
setbits_le32(&regs->cr1, STM32_I2C_CR1_PE);
return 0;
}
static int stm32_i2c_set_bus_speed(struct udevice *dev, unsigned int speed)
{
struct stm32_i2c_priv *i2c_priv = dev_get_priv(dev);
if (speed > I2C_SPEED_FAST_PLUS_RATE) {
dev_dbg(dev, "Speed %d not supported\n", speed);
return -EINVAL;
}
i2c_priv->speed = speed;
return stm32_i2c_hw_config(i2c_priv);
}
static int stm32_i2c_probe(struct udevice *dev)
{
struct stm32_i2c_priv *i2c_priv = dev_get_priv(dev);
struct reset_ctl reset_ctl;
fdt_addr_t addr;
int ret;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
i2c_priv->regs = (struct stm32_i2c_regs *)addr;
ret = clk_get_by_index(dev, 0, &i2c_priv->clk);
if (ret)
return ret;
ret = clk_enable(&i2c_priv->clk);
if (ret)
goto clk_free;
ret = reset_get_by_index(dev, 0, &reset_ctl);
if (ret)
goto clk_disable;
reset_assert(&reset_ctl);
udelay(2);
reset_deassert(&reset_ctl);
return 0;
clk_disable:
clk_disable(&i2c_priv->clk);
clk_free:
clk_free(&i2c_priv->clk);
return ret;
}
static int stm32_of_to_plat(struct udevice *dev)
{
const struct stm32_i2c_data *data;
struct stm32_i2c_priv *i2c_priv = dev_get_priv(dev);
u32 rise_time, fall_time;
int ret;
data = (const struct stm32_i2c_data *)dev_get_driver_data(dev);
if (!data)
return -EINVAL;
rise_time = dev_read_u32_default(dev, "i2c-scl-rising-time-ns",
STM32_I2C_RISE_TIME_DEFAULT);
fall_time = dev_read_u32_default(dev, "i2c-scl-falling-time-ns",
STM32_I2C_FALL_TIME_DEFAULT);
i2c_priv->dnf_dt = dev_read_u32_default(dev, "i2c-digital-filter-width-ns", 0);
if (!dev_read_bool(dev, "i2c-digital-filter"))
i2c_priv->dnf_dt = 0;
i2c_priv->setup.analog_filter = dev_read_bool(dev, "i2c-analog-filter");
/* Optional */
i2c_priv->regmap = syscon_regmap_lookup_by_phandle(dev,
"st,syscfg-fmp");
if (!IS_ERR(i2c_priv->regmap)) {
u32 fmp[3];
ret = dev_read_u32_array(dev, "st,syscfg-fmp", fmp, 3);
if (ret)
return ret;
i2c_priv->regmap_sreg = fmp[1];
i2c_priv->regmap_creg = fmp[1] + data->fmp_clr_offset;
i2c_priv->regmap_mask = fmp[2];
}
return 0;
}
static const struct dm_i2c_ops stm32_i2c_ops = {
.xfer = stm32_i2c_xfer,
.set_bus_speed = stm32_i2c_set_bus_speed,
};
static const struct udevice_id stm32_i2c_of_match[] = {
{ .compatible = "st,stm32f7-i2c", .data = (ulong)&stm32f7_data },
{ .compatible = "st,stm32mp15-i2c", .data = (ulong)&stm32mp15_data },
{}
};
U_BOOT_DRIVER(stm32f7_i2c) = {
.name = "stm32f7-i2c",
.id = UCLASS_I2C,
.of_match = stm32_i2c_of_match,
.of_to_plat = stm32_of_to_plat,
.probe = stm32_i2c_probe,
.priv_auto = sizeof(struct stm32_i2c_priv),
.ops = &stm32_i2c_ops,
};