u-boot/fs/zfs/zfs.c

2335 lines
54 KiB
C
Raw Normal View History

/*
*
* ZFS filesystem ported to u-boot by
* Jorgen Lundman <lundman at lundman.net>
*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 1999,2000,2001,2002,2003,2004
* Free Software Foundation, Inc.
* Copyright 2004 Sun Microsystems, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <linux/stat.h>
#include <linux/time.h>
#include <linux/ctype.h>
#include <asm/byteorder.h>
#include "zfs_common.h"
#include "div64.h"
block_dev_desc_t *zfs_dev_desc;
/*
* The zfs plug-in routines for GRUB are:
*
* zfs_mount() - locates a valid uberblock of the root pool and reads
* in its MOS at the memory address MOS.
*
* zfs_open() - locates a plain file object by following the MOS
* and places its dnode at the memory address DNODE.
*
* zfs_read() - read in the data blocks pointed by the DNODE.
*
*/
#include <zfs/zfs.h>
#include <zfs/zio.h>
#include <zfs/dnode.h>
#include <zfs/uberblock_impl.h>
#include <zfs/vdev_impl.h>
#include <zfs/zio_checksum.h>
#include <zfs/zap_impl.h>
#include <zfs/zap_leaf.h>
#include <zfs/zfs_znode.h>
#include <zfs/dmu.h>
#include <zfs/dmu_objset.h>
#include <zfs/sa_impl.h>
#include <zfs/dsl_dir.h>
#include <zfs/dsl_dataset.h>
#define ZPOOL_PROP_BOOTFS "bootfs"
/*
* For nvlist manipulation. (from nvpair.h)
*/
#define NV_ENCODE_NATIVE 0
#define NV_ENCODE_XDR 1
#define NV_BIG_ENDIAN 0
#define NV_LITTLE_ENDIAN 1
#define DATA_TYPE_UINT64 8
#define DATA_TYPE_STRING 9
#define DATA_TYPE_NVLIST 19
#define DATA_TYPE_NVLIST_ARRAY 20
/*
* Macros to get fields in a bp or DVA.
*/
#define P2PHASE(x, align) ((x) & ((align) - 1))
#define DVA_OFFSET_TO_PHYS_SECTOR(offset) \
((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
/*
* return x rounded down to an align boundary
* eg, P2ALIGN(1200, 1024) == 1024 (1*align)
* eg, P2ALIGN(1024, 1024) == 1024 (1*align)
* eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
* eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
*/
#define P2ALIGN(x, align) ((x) & -(align))
/*
* FAT ZAP data structures
*/
#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
#define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
#define CHAIN_END 0xffff /* end of the chunk chain */
/*
* The amount of space within the chunk available for the array is:
* chunk size - space for type (1) - space for next pointer (2)
*/
#define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
#define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5)
#define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
#define LEAF_HASH(bs, h) \
((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \
((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
/*
* The amount of space available for chunks is:
* block size shift - hash entry size (2) * number of hash
* entries - header space (2*chunksize)
*/
#define ZAP_LEAF_NUMCHUNKS(bs) \
(((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \
ZAP_LEAF_CHUNKSIZE - 2)
/*
* The chunks start immediately after the hash table. The end of the
* hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
* chunk_t.
*/
#define ZAP_LEAF_CHUNK(l, bs, idx) \
((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
#define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
/*
* Decompression Entry - lzjb
*/
#ifndef NBBY
#define NBBY 8
#endif
typedef int zfs_decomp_func_t(void *s_start, void *d_start,
uint32_t s_len, uint32_t d_len);
typedef struct decomp_entry {
char *name;
zfs_decomp_func_t *decomp_func;
} decomp_entry_t;
typedef struct dnode_end {
dnode_phys_t dn;
zfs_endian_t endian;
} dnode_end_t;
struct zfs_data {
/* cache for a file block of the currently zfs_open()-ed file */
char *file_buf;
uint64_t file_start;
uint64_t file_end;
/* XXX: ashift is per vdev, not per pool. We currently only ever touch
* a single vdev, but when/if raid-z or stripes are supported, this
* may need revision.
*/
uint64_t vdev_ashift;
uint64_t label_txg;
uint64_t pool_guid;
/* cache for a dnode block */
dnode_phys_t *dnode_buf;
dnode_phys_t *dnode_mdn;
uint64_t dnode_start;
uint64_t dnode_end;
zfs_endian_t dnode_endian;
uberblock_t current_uberblock;
dnode_end_t mos;
dnode_end_t mdn;
dnode_end_t dnode;
uint64_t vdev_phys_sector;
int (*userhook)(const char *, const struct zfs_dirhook_info *);
struct zfs_dirhook_info *dirinfo;
};
static int
zlib_decompress(void *s, void *d,
uint32_t slen, uint32_t dlen)
{
if (zlib_decompress(s, d, slen, dlen) < 0)
return ZFS_ERR_BAD_FS;
return ZFS_ERR_NONE;
}
static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
{"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */
{"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */
{"off", NULL}, /* ZIO_COMPRESS_OFF */
{"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */
{"empty", NULL}, /* ZIO_COMPRESS_EMPTY */
{"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */
{"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */
{"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */
{"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */
{"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */
{"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */
{"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */
{"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */
{"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */
};
static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
void *buf, struct zfs_data *data);
static int
zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
size_t *size, struct zfs_data *data);
/*
* Our own version of log2(). Same thing as highbit()-1.
*/
static int
zfs_log2(uint64_t num)
{
int i = 0;
while (num > 1) {
i++;
num = num >> 1;
}
return i;
}
/* Checksum Functions */
static void
zio_checksum_off(const void *buf __attribute__ ((unused)),
uint64_t size __attribute__ ((unused)),
zfs_endian_t endian __attribute__ ((unused)),
zio_cksum_t *zcp)
{
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
}
/* Checksum Table and Values */
static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
{NULL, 0, 0, "inherit"},
{NULL, 0, 0, "on"},
{zio_checksum_off, 0, 0, "off"},
{zio_checksum_SHA256, 1, 1, "label"},
{zio_checksum_SHA256, 1, 1, "gang_header"},
{NULL, 0, 0, "zilog"},
{fletcher_2_endian, 0, 0, "fletcher2"},
{fletcher_4_endian, 1, 0, "fletcher4"},
{zio_checksum_SHA256, 1, 0, "SHA256"},
{NULL, 0, 0, "zilog2"},
};
/*
* zio_checksum_verify: Provides support for checksum verification.
*
* Fletcher2, Fletcher4, and SHA256 are supported.
*
*/
static int
zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
zfs_endian_t endian, char *buf, int size)
{
zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
zio_checksum_info_t *ci = &zio_checksum_table[checksum];
zio_cksum_t actual_cksum, expected_cksum;
if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
printf("zfs unknown checksum function %d\n", checksum);
return ZFS_ERR_NOT_IMPLEMENTED_YET;
}
if (ci->ci_eck) {
expected_cksum = zec->zec_cksum;
zec->zec_cksum = zc;
ci->ci_func(buf, size, endian, &actual_cksum);
zec->zec_cksum = expected_cksum;
zc = expected_cksum;
} else {
ci->ci_func(buf, size, endian, &actual_cksum);
}
if ((actual_cksum.zc_word[0] != zc.zc_word[0])
|| (actual_cksum.zc_word[1] != zc.zc_word[1])
|| (actual_cksum.zc_word[2] != zc.zc_word[2])
|| (actual_cksum.zc_word[3] != zc.zc_word[3])) {
return ZFS_ERR_BAD_FS;
}
return ZFS_ERR_NONE;
}
/*
* vdev_uberblock_compare takes two uberblock structures and returns an integer
* indicating the more recent of the two.
* Return Value = 1 if ub2 is more recent
* Return Value = -1 if ub1 is more recent
* The most recent uberblock is determined using its transaction number and
* timestamp. The uberblock with the highest transaction number is
* considered "newer". If the transaction numbers of the two blocks match, the
* timestamps are compared to determine the "newer" of the two.
*/
static int
vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
{
zfs_endian_t ub1_endian, ub2_endian;
if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
ub1_endian = LITTLE_ENDIAN;
else
ub1_endian = BIG_ENDIAN;
if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
ub2_endian = LITTLE_ENDIAN;
else
ub2_endian = BIG_ENDIAN;
if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
< zfs_to_cpu64(ub2->ub_txg, ub2_endian))
return -1;
if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
> zfs_to_cpu64(ub2->ub_txg, ub2_endian))
return 1;
if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
< zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
return -1;
if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
> zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
return 1;
return 0;
}
/*
* Three pieces of information are needed to verify an uberblock: the magic
* number, the version number, and the checksum.
*
* Currently Implemented: version number, magic number, label txg
* Need to Implement: checksum
*
*/
static int
uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
{
int err;
zfs_endian_t endian = UNKNOWN_ENDIAN;
zio_cksum_t zc;
if (uber->ub_txg < data->label_txg) {
debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
uber->ub_txg, data->label_txg);
return ZFS_ERR_BAD_FS;
}
if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
endian = LITTLE_ENDIAN;
if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
endian = BIG_ENDIAN;
if (endian == UNKNOWN_ENDIAN) {
printf("invalid uberblock magic\n");
return ZFS_ERR_BAD_FS;
}
memset(&zc, 0, sizeof(zc));
zc.zc_word[0] = cpu_to_zfs64(offset, endian);
err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
(char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
if (!err) {
/* Check that the data pointed by the rootbp is usable. */
void *osp = NULL;
size_t ospsize;
err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
free(osp);
if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
printf("uberblock rootbp points to invalid data\n");
return ZFS_ERR_BAD_FS;
}
}
return err;
}
/*
* Find the best uberblock.
* Return:
* Success - Pointer to the best uberblock.
* Failure - NULL
*/
static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
{
const uint64_t sector = data->vdev_phys_sector;
uberblock_t *ubbest = NULL;
uberblock_t *ubnext;
unsigned int i, offset, pickedub = 0;
int err = ZFS_ERR_NONE;
const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
for (i = 0; i < UBCOUNT; i++) {
ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
err = uberblock_verify(ubnext, offset, data);
if (err)
continue;
if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
ubbest = ubnext;
pickedub = i;
}
}
if (ubbest)
debug("zfs Found best uberblock at idx %d, txg %llu\n",
pickedub, (unsigned long long) ubbest->ub_txg);
return ubbest;
}
static inline size_t
get_psize(blkptr_t *bp, zfs_endian_t endian)
{
return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
<< SPA_MINBLOCKSHIFT;
}
static uint64_t
dva_get_offset(dva_t *dva, zfs_endian_t endian)
{
return zfs_to_cpu64((dva)->dva_word[1],
endian) << SPA_MINBLOCKSHIFT;
}
/*
* Read a block of data based on the gang block address dva,
* and put its data in buf.
*
*/
static int
zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
struct zfs_data *data)
{
zio_gbh_phys_t *zio_gb;
uint64_t offset, sector;
unsigned i;
int err;
zio_cksum_t zc;
memset(&zc, 0, sizeof(zc));
zio_gb = malloc(SPA_GANGBLOCKSIZE);
if (!zio_gb)
return ZFS_ERR_OUT_OF_MEMORY;
offset = dva_get_offset(dva, endian);
sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
/* read in the gang block header */
err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
if (err) {
free(zio_gb);
return err;
}
/* XXX */
/* self checksuming the gang block header */
ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
dva_get_offset(dva, endian), bp->blk_birth, 0);
err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
(char *) zio_gb, SPA_GANGBLOCKSIZE);
if (err) {
free(zio_gb);
return err;
}
endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
if (zio_gb->zg_blkptr[i].blk_birth == 0)
continue;
err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
if (err) {
free(zio_gb);
return err;
}
buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
}
free(zio_gb);
return ZFS_ERR_NONE;
}
/*
* Read in a block of raw data to buf.
*/
static int
zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
struct zfs_data *data)
{
int i, psize;
int err = ZFS_ERR_NONE;
psize = get_psize(bp, endian);
/* pick a good dva from the block pointer */
for (i = 0; i < SPA_DVAS_PER_BP; i++) {
uint64_t offset, sector;
if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
continue;
if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
} else {
/* read in a data block */
offset = dva_get_offset(&bp->blk_dva[i], endian);
sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
err = zfs_devread(sector, 0, psize, buf);
}
if (!err) {
/*Check the underlying checksum before we rule this DVA as "good"*/
uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
if (!err)
return ZFS_ERR_NONE;
}
/* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/
}
if (!err) {
printf("couldn't find a valid DVA\n");
err = ZFS_ERR_BAD_FS;
}
return err;
}
/*
* Read in a block of data, verify its checksum, decompress if needed,
* and put the uncompressed data in buf.
*/
static int
zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
size_t *size, struct zfs_data *data)
{
size_t lsize, psize;
unsigned int comp;
char *compbuf = NULL;
int err;
*buf = NULL;
comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
lsize = (BP_IS_HOLE(bp) ? 0 :
(((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
<< SPA_MINBLOCKSHIFT));
psize = get_psize(bp, endian);
if (size)
*size = lsize;
if (comp >= ZIO_COMPRESS_FUNCTIONS) {
printf("compression algorithm %u not supported\n", (unsigned int) comp);
return ZFS_ERR_NOT_IMPLEMENTED_YET;
}
if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
printf("compression algorithm %s not supported\n", decomp_table[comp].name);
return ZFS_ERR_NOT_IMPLEMENTED_YET;
}
if (comp != ZIO_COMPRESS_OFF) {
compbuf = malloc(psize);
if (!compbuf)
return ZFS_ERR_OUT_OF_MEMORY;
} else {
compbuf = *buf = malloc(lsize);
}
err = zio_read_data(bp, endian, compbuf, data);
if (err) {
free(compbuf);
*buf = NULL;
return err;
}
if (comp != ZIO_COMPRESS_OFF) {
*buf = malloc(lsize);
if (!*buf) {
free(compbuf);
return ZFS_ERR_OUT_OF_MEMORY;
}
err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
free(compbuf);
if (err) {
free(*buf);
*buf = NULL;
return err;
}
}
return ZFS_ERR_NONE;
}
/*
* Get the block from a block id.
* push the block onto the stack.
*
*/
static int
dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
zfs_endian_t *endian_out, struct zfs_data *data)
{
int idx, level;
blkptr_t *bp_array = dn->dn.dn_blkptr;
int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
blkptr_t *bp;
void *tmpbuf = 0;
zfs_endian_t endian;
int err = ZFS_ERR_NONE;
bp = malloc(sizeof(blkptr_t));
if (!bp)
return ZFS_ERR_OUT_OF_MEMORY;
endian = dn->endian;
for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
*bp = bp_array[idx];
if (bp_array != dn->dn.dn_blkptr) {
free(bp_array);
bp_array = 0;
}
if (BP_IS_HOLE(bp)) {
size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
dn->endian)
<< SPA_MINBLOCKSHIFT;
*buf = malloc(size);
if (*buf) {
err = ZFS_ERR_OUT_OF_MEMORY;
break;
}
memset(*buf, 0, size);
endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
break;
}
if (level == 0) {
err = zio_read(bp, endian, buf, 0, data);
endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
break;
}
err = zio_read(bp, endian, &tmpbuf, 0, data);
endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
if (err)
break;
bp_array = tmpbuf;
}
if (bp_array != dn->dn.dn_blkptr)
free(bp_array);
if (endian_out)
*endian_out = endian;
free(bp);
return err;
}
/*
* mzap_lookup: Looks up property described by "name" and returns the value
* in "value".
*/
static int
mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
int objsize, char *name, uint64_t * value)
{
int i, chunks;
mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
chunks = objsize / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++) {
if (strcmp(mzap_ent[i].mze_name, name) == 0) {
*value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
return ZFS_ERR_NONE;
}
}
printf("couldn't find '%s'\n", name);
return ZFS_ERR_FILE_NOT_FOUND;
}
static int
mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
int (*hook)(const char *name,
uint64_t val,
struct zfs_data *data),
struct zfs_data *data)
{
int i, chunks;
mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
chunks = objsize / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++) {
if (hook(mzap_ent[i].mze_name,
zfs_to_cpu64(mzap_ent[i].mze_value, endian),
data))
return 1;
}
return 0;
}
static uint64_t
zap_hash(uint64_t salt, const char *name)
{
static uint64_t table[256];
const uint8_t *cp;
uint8_t c;
uint64_t crc = salt;
if (table[128] == 0) {
uint64_t *ct;
int i, j;
for (i = 0; i < 256; i++) {
for (ct = table + i, *ct = i, j = 8; j > 0; j--)
*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
}
}
for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
/*
* Only use 28 bits, since we need 4 bits in the cookie for the
* collision differentiator. We MUST use the high bits, since
* those are the onces that we first pay attention to when
* chosing the bucket.
*/
crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
return crc;
}
/*
* Only to be used on 8-bit arrays.
* array_len is actual len in bytes (not encoded le_value_length).
* buf is null-terminated.
*/
/* XXX */
static int
zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
int blksft, int chunk, int array_len, const char *buf)
{
int bseen = 0;
while (bseen < array_len) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
return 0;
if (memcmp(la->la_array, buf + bseen, toread) != 0)
break;
chunk = zfs_to_cpu16(la->la_next, endian);
bseen += toread;
}
return (bseen == array_len);
}
/* XXX */
static int
zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
int chunk, int array_len, char *buf)
{
int bseen = 0;
while (bseen < array_len) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
/* Don't use errno because this error is to be ignored. */
return ZFS_ERR_BAD_FS;
memcpy(buf + bseen, la->la_array, toread);
chunk = zfs_to_cpu16(la->la_next, endian);
bseen += toread;
}
return ZFS_ERR_NONE;
}
/*
* Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
* value for the property "name".
*
*/
/* XXX */
static int
zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
int blksft, uint64_t h,
const char *name, uint64_t *value)
{
uint16_t chunk;
struct zap_leaf_entry *le;
/* Verify if this is a valid leaf block */
if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
printf("invalid leaf type\n");
return ZFS_ERR_BAD_FS;
}
if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
printf("invalid leaf magic\n");
return ZFS_ERR_BAD_FS;
}
for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
chunk != CHAIN_END; chunk = le->le_next) {
if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
printf("invalid chunk number\n");
return ZFS_ERR_BAD_FS;
}
le = ZAP_LEAF_ENTRY(l, blksft, chunk);
/* Verify the chunk entry */
if (le->le_type != ZAP_CHUNK_ENTRY) {
printf("invalid chunk entry\n");
return ZFS_ERR_BAD_FS;
}
if (zfs_to_cpu64(le->le_hash, endian) != h)
continue;
if (zap_leaf_array_equal(l, endian, blksft,
zfs_to_cpu16(le->le_name_chunk, endian),
zfs_to_cpu16(le->le_name_length, endian),
name)) {
struct zap_leaf_array *la;
if (le->le_int_size != 8 || le->le_value_length != 1) {
printf("invalid leaf chunk entry\n");
return ZFS_ERR_BAD_FS;
}
/* get the uint64_t property value */
la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
*value = be64_to_cpu(la->la_array64);
return ZFS_ERR_NONE;
}
}
printf("couldn't find '%s'\n", name);
return ZFS_ERR_FILE_NOT_FOUND;
}
/* Verify if this is a fat zap header block */
static int
zap_verify(zap_phys_t *zap)
{
if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
printf("bad ZAP magic\n");
return ZFS_ERR_BAD_FS;
}
if (zap->zap_flags != 0) {
printf("bad ZAP flags\n");
return ZFS_ERR_BAD_FS;
}
if (zap->zap_salt == 0) {
printf("bad ZAP salt\n");
return ZFS_ERR_BAD_FS;
}
return ZFS_ERR_NONE;
}
/*
* Fat ZAP lookup
*
*/
/* XXX */
static int
fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
char *name, uint64_t *value, struct zfs_data *data)
{
void *l;
uint64_t hash, idx, blkid;
int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
zap_dnode->endian) << DNODE_SHIFT);
int err;
zfs_endian_t leafendian;
err = zap_verify(zap);
if (err)
return err;
hash = zap_hash(zap->zap_salt, name);
/* get block id from index */
if (zap->zap_ptrtbl.zt_numblks != 0) {
printf("external pointer tables not supported\n");
return ZFS_ERR_NOT_IMPLEMENTED_YET;
}
idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
/* Get the leaf block */
if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
printf("ZAP leaf is too small\n");
return ZFS_ERR_BAD_FS;
}
err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
if (err)
return err;
err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
free(l);
return err;
}
/* XXX */
static int
fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
int (*hook)(const char *name,
uint64_t val,
struct zfs_data *data),
struct zfs_data *data)
{
zap_leaf_phys_t *l;
void *l_in;
uint64_t idx, blkid;
uint16_t chunk;
int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
zap_dnode->endian) << DNODE_SHIFT);
int err;
zfs_endian_t endian;
if (zap_verify(zap))
return 0;
/* get block id from index */
if (zap->zap_ptrtbl.zt_numblks != 0) {
printf("external pointer tables not supported\n");
return 0;
}
/* Get the leaf block */
if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
printf("ZAP leaf is too small\n");
return 0;
}
for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
l = l_in;
if (err)
continue;
/* Verify if this is a valid leaf block */
if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
free(l);
continue;
}
if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
free(l);
continue;
}
for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
char *buf;
struct zap_leaf_array *la;
struct zap_leaf_entry *le;
uint64_t val;
le = ZAP_LEAF_ENTRY(l, blksft, chunk);
/* Verify the chunk entry */
if (le->le_type != ZAP_CHUNK_ENTRY)
continue;
buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
+ 1);
if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
le->le_name_length, buf)) {
free(buf);
continue;
}
buf[le->le_name_length] = 0;
if (le->le_int_size != 8
|| zfs_to_cpu16(le->le_value_length, endian) != 1)
continue;
/* get the uint64_t property value */
la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
val = be64_to_cpu(la->la_array64);
if (hook(buf, val, data))
return 1;
free(buf);
}
}
return 0;
}
/*
* Read in the data of a zap object and find the value for a matching
* property name.
*
*/
static int
zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
struct zfs_data *data)
{
uint64_t block_type;
int size;
void *zapbuf;
int err;
zfs_endian_t endian;
/* Read in the first block of the zap object data. */
size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
zap_dnode->endian) << SPA_MINBLOCKSHIFT;
err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
if (err)
return err;
block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
if (block_type == ZBT_MICRO) {
err = (mzap_lookup(zapbuf, endian, size, name, val));
free(zapbuf);
return err;
} else if (block_type == ZBT_HEADER) {
/* this is a fat zap */
err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
free(zapbuf);
return err;
}
printf("unknown ZAP type\n");
return ZFS_ERR_BAD_FS;
}
static int
zap_iterate(dnode_end_t *zap_dnode,
int (*hook)(const char *name, uint64_t val,
struct zfs_data *data),
struct zfs_data *data)
{
uint64_t block_type;
int size;
void *zapbuf;
int err;
int ret;
zfs_endian_t endian;
/* Read in the first block of the zap object data. */
size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
if (err)
return 0;
block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
if (block_type == ZBT_MICRO) {
ret = mzap_iterate(zapbuf, endian, size, hook, data);
free(zapbuf);
return ret;
} else if (block_type == ZBT_HEADER) {
/* this is a fat zap */
ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
free(zapbuf);
return ret;
}
printf("unknown ZAP type\n");
return 0;
}
/*
* Get the dnode of an object number from the metadnode of an object set.
*
* Input
* mdn - metadnode to get the object dnode
* objnum - object number for the object dnode
* buf - data buffer that holds the returning dnode
*/
static int
dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
dnode_end_t *buf, struct zfs_data *data)
{
uint64_t blkid, blksz; /* the block id this object dnode is in */
int epbs; /* shift of number of dnodes in a block */
int idx; /* index within a block */
void *dnbuf;
int err;
zfs_endian_t endian;
blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
mdn->endian) << SPA_MINBLOCKSHIFT;
epbs = zfs_log2(blksz) - DNODE_SHIFT;
blkid = objnum >> epbs;
idx = objnum & ((1 << epbs) - 1);
if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
sizeof(*mdn)) == 0
&& objnum >= data->dnode_start && objnum < data->dnode_end) {
memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
buf->endian = data->dnode_endian;
if (type && buf->dn.dn_type != type) {
printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
return ZFS_ERR_BAD_FS;
}
return ZFS_ERR_NONE;
}
err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
if (err)
return err;
free(data->dnode_buf);
free(data->dnode_mdn);
data->dnode_mdn = malloc(sizeof(*mdn));
if (!data->dnode_mdn) {
data->dnode_buf = 0;
} else {
memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
data->dnode_buf = dnbuf;
data->dnode_start = blkid << epbs;
data->dnode_end = (blkid + 1) << epbs;
data->dnode_endian = endian;
}
memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
buf->endian = endian;
if (type && buf->dn.dn_type != type) {
printf("incorrect dnode type\n");
return ZFS_ERR_BAD_FS;
}
return ZFS_ERR_NONE;
}
/*
* Get the file dnode for a given file name where mdn is the meta dnode
* for this ZFS object set. When found, place the file dnode in dn.
* The 'path' argument will be mangled.
*
*/
static int
dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
struct zfs_data *data)
{
uint64_t objnum, version;
char *cname, ch;
int err = ZFS_ERR_NONE;
char *path, *path_buf;
struct dnode_chain {
struct dnode_chain *next;
dnode_end_t dn;
};
struct dnode_chain *dnode_path = 0, *dn_new, *root;
dn_new = malloc(sizeof(*dn_new));
if (!dn_new)
return ZFS_ERR_OUT_OF_MEMORY;
dn_new->next = 0;
dnode_path = root = dn_new;
err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
&(dnode_path->dn), data);
if (err) {
free(dn_new);
return err;
}
err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
if (err) {
free(dn_new);
return err;
}
if (version > ZPL_VERSION) {
free(dn_new);
printf("too new ZPL version\n");
return ZFS_ERR_NOT_IMPLEMENTED_YET;
}
err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
if (err) {
free(dn_new);
return err;
}
err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
if (err) {
free(dn_new);
return err;
}
path = path_buf = strdup(path_in);
if (!path_buf) {
free(dn_new);
return ZFS_ERR_OUT_OF_MEMORY;
}
while (1) {
/* skip leading slashes */
while (*path == '/')
path++;
if (!*path)
break;
/* get the next component name */
cname = path;
while (*path && *path != '/')
path++;
/* Skip dot. */
if (cname + 1 == path && cname[0] == '.')
continue;
/* Handle double dot. */
if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') {
if (dn_new->next) {
dn_new = dnode_path;
dnode_path = dn_new->next;
free(dn_new);
} else {
printf("can't resolve ..\n");
err = ZFS_ERR_FILE_NOT_FOUND;
break;
}
continue;
}
ch = *path;
*path = 0; /* ensure null termination */
if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
free(path_buf);
printf("not a directory\n");
return ZFS_ERR_BAD_FILE_TYPE;
}
err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
if (err)
break;
dn_new = malloc(sizeof(*dn_new));
if (!dn_new) {
err = ZFS_ERR_OUT_OF_MEMORY;
break;
}
dn_new->next = dnode_path;
dnode_path = dn_new;
objnum = ZFS_DIRENT_OBJ(objnum);
err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
if (err)
break;
*path = ch;
}
if (!err)
memcpy(dn, &(dnode_path->dn), sizeof(*dn));
while (dnode_path) {
dn_new = dnode_path->next;
free(dnode_path);
dnode_path = dn_new;
}
free(path_buf);
return err;
}
/*
* Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
* e.g. pool/rootfs, or a given object number (obj), e.g. the object number
* of pool/rootfs.
*
* If no fsname and no obj are given, return the DSL_DIR metadnode.
* If fsname is given, return its metadnode and its matching object number.
* If only obj is given, return the metadnode for this object number.
*
*/
static int
get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
dnode_end_t *mdn, struct zfs_data *data)
{
uint64_t objnum;
int err;
err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
DMU_OT_OBJECT_DIRECTORY, mdn, data);
if (err)
return err;
err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
if (err)
return err;
err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
if (err)
return err;
while (*fsname) {
uint64_t childobj;
char *cname, ch;
while (*fsname == '/')
fsname++;
if (!*fsname || *fsname == '@')
break;
cname = fsname;
while (*fsname && !isspace(*fsname) && *fsname != '/')
fsname++;
ch = *fsname;
*fsname = 0;
childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
err = dnode_get(mosmdn, childobj,
DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
if (err)
return err;
err = zap_lookup(mdn, cname, &objnum, data);
if (err)
return err;
err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
if (err)
return err;
*fsname = ch;
}
return ZFS_ERR_NONE;
}
static int
make_mdn(dnode_end_t *mdn, struct zfs_data *data)
{
void *osp;
blkptr_t *bp;
size_t ospsize;
int err;
bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
if (err)
return err;
if (ospsize < OBJSET_PHYS_SIZE_V14) {
free(osp);
printf("too small osp\n");
return ZFS_ERR_BAD_FS;
}
mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
memmove((char *) &(mdn->dn),
(char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
free(osp);
return ZFS_ERR_NONE;
}
static int
dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
struct zfs_data *data)
{
char *fsname, *snapname;
const char *ptr_at, *filename;
uint64_t headobj;
int err;
ptr_at = strchr(fullpath, '@');
if (!ptr_at) {
*isfs = 1;
filename = 0;
snapname = 0;
fsname = strdup(fullpath);
} else {
const char *ptr_slash = strchr(ptr_at, '/');
*isfs = 0;
fsname = malloc(ptr_at - fullpath + 1);
if (!fsname)
return ZFS_ERR_OUT_OF_MEMORY;
memcpy(fsname, fullpath, ptr_at - fullpath);
fsname[ptr_at - fullpath] = 0;
if (ptr_at[1] && ptr_at[1] != '/') {
snapname = malloc(ptr_slash - ptr_at);
if (!snapname) {
free(fsname);
return ZFS_ERR_OUT_OF_MEMORY;
}
memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
snapname[ptr_slash - ptr_at - 1] = 0;
} else {
snapname = 0;
}
if (ptr_slash)
filename = ptr_slash;
else
filename = "/";
printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
fsname, snapname, filename);
}
err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
if (err) {
free(fsname);
free(snapname);
return err;
}
headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
if (err) {
free(fsname);
free(snapname);
return err;
}
if (snapname) {
uint64_t snapobj;
snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
err = dnode_get(&(data->mos), snapobj,
DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
if (!err)
err = zap_lookup(mdn, snapname, &headobj, data);
if (!err)
err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
if (err) {
free(fsname);
free(snapname);
return err;
}
}
if (mdnobj)
*mdnobj = headobj;
make_mdn(mdn, data);
if (*isfs) {
free(fsname);
free(snapname);
return ZFS_ERR_NONE;
}
err = dnode_get_path(mdn, filename, dn, data);
free(fsname);
free(snapname);
return err;
}
/*
* For a given XDR packed nvlist, verify the first 4 bytes and move on.
*
* An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
*
* encoding method/host endian (4 bytes)
* nvl_version (4 bytes)
* nvl_nvflag (4 bytes)
* encoded nvpairs:
* encoded size of the nvpair (4 bytes)
* decoded size of the nvpair (4 bytes)
* name string size (4 bytes)
* name string data (sizeof(NV_ALIGN4(string))
* data type (4 bytes)
* # of elements in the nvpair (4 bytes)
* data
* 2 zero's for the last nvpair
* (end of the entire list) (8 bytes)
*
*/
static int
nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
size_t *size_out, size_t *nelm_out)
{
int name_len, type, encode_size;
char *nvpair, *nvp_name;
/* Verify if the 1st and 2nd byte in the nvlist are valid. */
/* NOTE: independently of what endianness header announces all
subsequent values are big-endian. */
if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
&& nvlist[1] != NV_BIG_ENDIAN)) {
printf("zfs incorrect nvlist header\n");
return ZFS_ERR_BAD_FS;
}
/* skip the header, nvl_version, and nvl_nvflag */
nvlist = nvlist + 4 * 3;
/*
* Loop thru the nvpair list
* The XDR representation of an integer is in big-endian byte order.
*/
while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
int nelm;
nvpair = nvlist + 4 * 2; /* skip the encode/decode size */
name_len = be32_to_cpu(*(uint32_t *) nvpair);
nvpair += 4;
nvp_name = nvpair;
nvpair = nvpair + ((name_len + 3) & ~3); /* align */
type = be32_to_cpu(*(uint32_t *) nvpair);
nvpair += 4;
nelm = be32_to_cpu(*(uint32_t *) nvpair);
if (nelm < 1) {
printf("empty nvpair\n");
return ZFS_ERR_BAD_FS;
}
nvpair += 4;
if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
*val = nvpair;
*size_out = encode_size;
if (nelm_out)
*nelm_out = nelm;
return 1;
}
nvlist += encode_size; /* goto the next nvpair */
}
return 0;
}
int
zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
{
char *nvpair;
size_t size;
int found;
found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
if (!found)
return 0;
if (size < sizeof(uint64_t)) {
printf("invalid uint64\n");
return ZFS_ERR_BAD_FS;
}
*out = be64_to_cpu(*(uint64_t *) nvpair);
return 1;
}
char *
zfs_nvlist_lookup_string(char *nvlist, char *name)
{
char *nvpair;
char *ret;
size_t slen;
size_t size;
int found;
found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
if (!found)
return 0;
if (size < 4) {
printf("invalid string\n");
return 0;
}
slen = be32_to_cpu(*(uint32_t *) nvpair);
if (slen > size - 4)
slen = size - 4;
ret = malloc(slen + 1);
if (!ret)
return 0;
memcpy(ret, nvpair + 4, slen);
ret[slen] = 0;
return ret;
}
char *
zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
{
char *nvpair;
char *ret;
size_t size;
int found;
found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
&size, 0);
if (!found)
return 0;
ret = calloc(1, size + 3 * sizeof(uint32_t));
if (!ret)
return 0;
memcpy(ret, nvlist, sizeof(uint32_t));
memcpy(ret + sizeof(uint32_t), nvpair, size);
return ret;
}
int
zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
{
char *nvpair;
size_t nelm, size;
int found;
found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
&size, &nelm);
if (!found)
return -1;
return nelm;
}
char *
zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
size_t index)
{
char *nvpair, *nvpairptr;
int found;
char *ret;
size_t size;
unsigned i;
size_t nelm;
found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
&size, &nelm);
if (!found)
return 0;
if (index >= nelm) {
printf("trying to lookup past nvlist array\n");
return 0;
}
nvpairptr = nvpair;
for (i = 0; i < index; i++) {
uint32_t encode_size;
/* skip the header, nvl_version, and nvl_nvflag */
nvpairptr = nvpairptr + 4 * 2;
while (nvpairptr < nvpair + size
&& (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
nvlist += encode_size; /* goto the next nvpair */
nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
}
if (nvpairptr >= nvpair + size
|| nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
>= nvpair + size) {
printf("incorrect nvlist array\n");
return 0;
}
ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
+ 3 * sizeof(uint32_t));
if (!ret)
return 0;
memcpy(ret, nvlist, sizeof(uint32_t));
memcpy(ret + sizeof(uint32_t), nvpairptr, size);
return ret;
}
static int
int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
{
int err;
*nvlist = malloc(VDEV_PHYS_SIZE);
/* Read in the vdev name-value pair list (112K). */
err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
if (err) {
free(*nvlist);
*nvlist = 0;
return err;
}
return ZFS_ERR_NONE;
}
/*
* Check the disk label information and retrieve needed vdev name-value pairs.
*
*/
static int
check_pool_label(struct zfs_data *data)
{
uint64_t pool_state;
char *nvlist; /* for the pool */
char *vdevnvlist; /* for the vdev */
uint64_t diskguid;
uint64_t version;
int found;
int err;
err = int_zfs_fetch_nvlist(data, &nvlist);
if (err)
return err;
found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
&pool_state);
if (!found) {
free(nvlist);
printf("zfs pool state not found\n");
return ZFS_ERR_BAD_FS;
}
if (pool_state == POOL_STATE_DESTROYED) {
free(nvlist);
printf("zpool is marked as destroyed\n");
return ZFS_ERR_BAD_FS;
}
data->label_txg = 0;
found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
&data->label_txg);
if (!found) {
free(nvlist);
printf("zfs pool txg not found\n");
return ZFS_ERR_BAD_FS;
}
/* not an active device */
if (data->label_txg == 0) {
free(nvlist);
printf("zpool is not active\n");
return ZFS_ERR_BAD_FS;
}
found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
&version);
if (!found) {
free(nvlist);
printf("zpool config version not found\n");
return ZFS_ERR_BAD_FS;
}
if (version > SPA_VERSION) {
free(nvlist);
printf("SPA version too new %llu > %llu\n",
(unsigned long long) version,
(unsigned long long) SPA_VERSION);
return ZFS_ERR_NOT_IMPLEMENTED_YET;
}
vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
if (!vdevnvlist) {
free(nvlist);
printf("ZFS config vdev tree not found\n");
return ZFS_ERR_BAD_FS;
}
found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
&data->vdev_ashift);
free(vdevnvlist);
if (!found) {
free(nvlist);
printf("ZPOOL config ashift not found\n");
return ZFS_ERR_BAD_FS;
}
found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
if (!found) {
free(nvlist);
printf("ZPOOL config guid not found\n");
return ZFS_ERR_BAD_FS;
}
found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
if (!found) {
free(nvlist);
printf("ZPOOL config pool guid not found\n");
return ZFS_ERR_BAD_FS;
}
free(nvlist);
printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
(unsigned long long) data->pool_guid,
(unsigned long long) data->pool_guid,
(unsigned long long) diskguid,
(unsigned long long) diskguid,
(unsigned long long) data->label_txg,
(unsigned long long) version,
(unsigned long long) data->vdev_ashift);
return ZFS_ERR_NONE;
}
/*
* vdev_label_start returns the physical disk offset (in bytes) of
* label "l".
*/
static uint64_t vdev_label_start(uint64_t psize, int l)
{
return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
0 : psize -
VDEV_LABELS * sizeof(vdev_label_t)));
}
void
zfs_unmount(struct zfs_data *data)
{
free(data->dnode_buf);
free(data->dnode_mdn);
free(data->file_buf);
free(data);
}
/*
* zfs_mount() locates a valid uberblock of the root pool and read in its MOS
* to the memory address MOS.
*
*/
struct zfs_data *
zfs_mount(device_t dev)
{
struct zfs_data *data = 0;
int label = 0, bestlabel = -1;
char *ub_array;
uberblock_t *ubbest;
uberblock_t *ubcur = NULL;
void *osp = 0;
size_t ospsize;
int err;
data = malloc(sizeof(*data));
if (!data)
return 0;
memset(data, 0, sizeof(*data));
ub_array = malloc(VDEV_UBERBLOCK_RING);
if (!ub_array) {
zfs_unmount(data);
return 0;
}
ubbest = malloc(sizeof(*ubbest));
if (!ubbest) {
zfs_unmount(data);
return 0;
}
memset(ubbest, 0, sizeof(*ubbest));
/*
* some eltorito stacks don't give us a size and
* we end up setting the size to MAXUINT, further
* some of these devices stop working once a single
* read past the end has been issued. Checking
* for a maximum part_length and skipping the backup
* labels at the end of the slice/partition/device
* avoids breaking down on such devices.
*/
const int vdevnum =
dev->part_length == 0 ?
VDEV_LABELS / 2 : VDEV_LABELS;
/* Size in bytes of the device (disk or partition) aligned to label size*/
uint64_t device_size =
dev->part_length << SECTOR_BITS;
const uint64_t alignedbytes =
P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
for (label = 0; label < vdevnum; label++) {
uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
debug("zfs reading label %d at sector %llu (byte %llu)\n",
label, (unsigned long long) labelstart,
(unsigned long long) labelstartbytes);
data->vdev_phys_sector = labelstart +
((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
err = check_pool_label(data);
if (err) {
printf("zfs error checking label %d\n", label);
continue;
}
/* Read in the uberblock ring (128K). */
err = zfs_devread(data->vdev_phys_sector +
(VDEV_PHYS_SIZE >> SECTOR_BITS),
0, VDEV_UBERBLOCK_RING, ub_array);
if (err) {
printf("zfs error reading uberblock ring for label %d\n", label);
continue;
}
ubcur = find_bestub(ub_array, data);
if (!ubcur) {
printf("zfs No good uberblocks found in label %d\n", label);
continue;
}
if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
/* Looks like the block is good, so use it.*/
memcpy(ubbest, ubcur, sizeof(*ubbest));
bestlabel = label;
debug("zfs Current best uberblock found in label %d\n", label);
}
}
free(ub_array);
/* We zero'd the structure to begin with. If we never assigned to it,
magic will still be zero. */
if (!ubbest->ub_magic) {
printf("couldn't find a valid ZFS label\n");
zfs_unmount(data);
free(ubbest);
return 0;
}
debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
zfs_endian_t ub_endian =
zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
? LITTLE_ENDIAN : BIG_ENDIAN;
debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
if (err) {
printf("couldn't zio_read object directory\n");
zfs_unmount(data);
free(ubbest);
return 0;
}
if (ospsize < OBJSET_PHYS_SIZE_V14) {
printf("osp too small\n");
zfs_unmount(data);
free(osp);
free(ubbest);
return 0;
}
/* Got the MOS. Save it at the memory addr MOS. */
memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
data->mos.endian =
(zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
free(osp);
free(ubbest);
return data;
}
int
zfs_fetch_nvlist(device_t dev, char **nvlist)
{
struct zfs_data *zfs;
int err;
zfs = zfs_mount(dev);
if (!zfs)
return ZFS_ERR_BAD_FS;
err = int_zfs_fetch_nvlist(zfs, nvlist);
zfs_unmount(zfs);
return err;
}
/*
* zfs_open() locates a file in the rootpool by following the
* MOS and places the dnode of the file in the memory address DNODE.
*/
int
zfs_open(struct zfs_file *file, const char *fsfilename)
{
struct zfs_data *data;
int err;
int isfs;
data = zfs_mount(file->device);
if (!data)
return ZFS_ERR_BAD_FS;
err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
&(data->dnode), &isfs, data);
if (err) {
zfs_unmount(data);
return err;
}
if (isfs) {
zfs_unmount(data);
printf("Missing @ or / separator\n");
return ZFS_ERR_FILE_NOT_FOUND;
}
/* We found the dnode for this file. Verify if it is a plain file. */
if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
zfs_unmount(data);
printf("not a file\n");
return ZFS_ERR_BAD_FILE_TYPE;
}
/* get the file size and set the file position to 0 */
/*
* For DMU_OT_SA we will need to locate the SIZE attribute
* attribute, which could be either in the bonus buffer
* or the "spill" block.
*/
if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
void *sahdrp;
int hdrsize;
if (data->dnode.dn.dn_bonuslen != 0) {
sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
} else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
blkptr_t *bp = &data->dnode.dn.dn_spill;
err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
if (err)
return err;
} else {
printf("filesystem is corrupt :(\n");
return ZFS_ERR_BAD_FS;
}
hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
} else {
file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
}
file->data = data;
file->offset = 0;
return ZFS_ERR_NONE;
}
uint64_t
zfs_read(zfs_file_t file, char *buf, uint64_t len)
{
struct zfs_data *data = (struct zfs_data *) file->data;
int blksz, movesize;
uint64_t length;
int64_t red;
int err;
if (data->file_buf == NULL) {
data->file_buf = malloc(SPA_MAXBLOCKSIZE);
if (!data->file_buf)
return -1;
data->file_start = data->file_end = 0;
}
/*
* If offset is in memory, move it into the buffer provided and return.
*/
if (file->offset >= data->file_start
&& file->offset + len <= data->file_end) {
memmove(buf, data->file_buf + file->offset - data->file_start,
len);
return len;
}
blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
data->dnode.endian) << SPA_MINBLOCKSHIFT;
/*
* Entire Dnode is too big to fit into the space available. We
* will need to read it in chunks. This could be optimized to
* read in as large a chunk as there is space available, but for
* now, this only reads in one data block at a time.
*/
length = len;
red = 0;
while (length) {
void *t;
/*
* Find requested blkid and the offset within that block.
*/
uint64_t blkid = file->offset + red;
blkid = do_div(blkid, blksz);
free(data->file_buf);
data->file_buf = 0;
err = dmu_read(&(data->dnode), blkid, &t,
0, data);
data->file_buf = t;
if (err)
return -1;
data->file_start = blkid * blksz;
data->file_end = data->file_start + blksz;
movesize = min(length, data->file_end - (int)file->offset - red);
memmove(buf, data->file_buf + file->offset + red
- data->file_start, movesize);
buf += movesize;
length -= movesize;
red += movesize;
}
return len;
}
int
zfs_close(zfs_file_t file)
{
zfs_unmount((struct zfs_data *) file->data);
return ZFS_ERR_NONE;
}
int
zfs_getmdnobj(device_t dev, const char *fsfilename,
uint64_t *mdnobj)
{
struct zfs_data *data;
int err;
int isfs;
data = zfs_mount(dev);
if (!data)
return ZFS_ERR_BAD_FS;
err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
&(data->dnode), &isfs, data);
zfs_unmount(data);
return err;
}
static void
fill_fs_info(struct zfs_dirhook_info *info,
dnode_end_t mdn, struct zfs_data *data)
{
int err;
dnode_end_t dn;
uint64_t objnum;
uint64_t headobj;
memset(info, 0, sizeof(*info));
info->dir = 1;
if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
if (err) {
printf("zfs failed here 1\n");
return;
}
}
make_mdn(&mdn, data);
err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
&dn, data);
if (err) {
printf("zfs failed here 2\n");
return;
}
err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
if (err) {
printf("zfs failed here 3\n");
return;
}
err = dnode_get(&mdn, objnum, 0, &dn, data);
if (err) {
printf("zfs failed here 4\n");
return;
}
info->mtimeset = 1;
info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
return;
}
static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
{
struct zfs_dirhook_info info;
dnode_end_t dn;
memset(&info, 0, sizeof(info));
dnode_get(&(data->mdn), val, 0, &dn, data);
info.mtimeset = 1;
info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
debug("zfs type=%d, name=%s\n",
(int)dn.dn.dn_type, (char *)name);
if (!data->userhook)
return 0;
return data->userhook(name, &info);
}
static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
{
struct zfs_dirhook_info info;
dnode_end_t mdn;
int err;
err = dnode_get(&(data->mos), val, 0, &mdn, data);
if (err)
return 0;
if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
return 0;
fill_fs_info(&info, mdn, data);
if (!data->userhook)
return 0;
return data->userhook(name, &info);
}
static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
{
struct zfs_dirhook_info info;
char *name2;
int ret = 0;
dnode_end_t mdn;
int err;
err = dnode_get(&(data->mos), val, 0, &mdn, data);
if (err)
return 0;
if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
return 0;
fill_fs_info(&info, mdn, data);
name2 = malloc(strlen(name) + 2);
name2[0] = '@';
memcpy(name2 + 1, name, strlen(name) + 1);
if (data->userhook)
ret = data->userhook(name2, &info);
free(name2);
return ret;
}
int
zfs_ls(device_t device, const char *path,
int (*hook)(const char *, const struct zfs_dirhook_info *))
{
struct zfs_data *data;
int err;
int isfs;
data = zfs_mount(device);
if (!data)
return ZFS_ERR_BAD_FS;
data->userhook = hook;
err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
if (err) {
zfs_unmount(data);
return err;
}
if (isfs) {
uint64_t childobj, headobj;
uint64_t snapobj;
dnode_end_t dn;
struct zfs_dirhook_info info;
fill_fs_info(&info, data->dnode, data);
hook("@", &info);
childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
err = dnode_get(&(data->mos), childobj,
DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
if (err) {
zfs_unmount(data);
return err;
}
zap_iterate(&dn, iterate_zap_fs, data);
err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
if (err) {
zfs_unmount(data);
return err;
}
snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
err = dnode_get(&(data->mos), snapobj,
DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
if (err) {
zfs_unmount(data);
return err;
}
zap_iterate(&dn, iterate_zap_snap, data);
} else {
if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
zfs_unmount(data);
printf("not a directory\n");
return ZFS_ERR_BAD_FILE_TYPE;
}
zap_iterate(&(data->dnode), iterate_zap, data);
}
zfs_unmount(data);
return ZFS_ERR_NONE;
}