u-boot/arch/arm/cpu/arm926ejs/mxs/spl_power_init.c

934 lines
25 KiB
C
Raw Normal View History

/*
* Freescale i.MX28 Boot PMIC init
*
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
* on behalf of DENX Software Engineering GmbH
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <config.h>
#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include "mxs_init.h"
static void mxs_power_clock2xtal(void)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
/* Set XTAL as CPU reference clock */
writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
&clkctrl_regs->hw_clkctrl_clkseq_set);
}
static void mxs_power_clock2pll(void)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0,
CLKCTRL_PLL0CTRL0_POWER);
early_delay(100);
setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq,
CLKCTRL_CLKSEQ_BYPASS_CPU);
}
static void mxs_power_clear_auto_restart(void)
{
struct mxs_rtc_regs *rtc_regs =
(struct mxs_rtc_regs *)MXS_RTC_BASE;
writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr);
while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST)
;
writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr);
while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE)
;
/*
* Due to the hardware design bug of mx28 EVK-A
* we need to set the AUTO_RESTART bit.
*/
if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART)
return;
while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
;
setbits_le32(&rtc_regs->hw_rtc_persistent0,
RTC_PERSISTENT0_AUTO_RESTART);
writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set);
writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr);
while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
;
while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK)
;
}
static void mxs_power_set_linreg(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
/* Set linear regulator 25mV below switching converter */
clrsetbits_le32(&power_regs->hw_power_vdddctrl,
POWER_VDDDCTRL_LINREG_OFFSET_MASK,
POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
clrsetbits_le32(&power_regs->hw_power_vddactrl,
POWER_VDDACTRL_LINREG_OFFSET_MASK,
POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW);
clrsetbits_le32(&power_regs->hw_power_vddioctrl,
POWER_VDDIOCTRL_LINREG_OFFSET_MASK,
POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW);
}
static int mxs_get_batt_volt(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t volt = readl(&power_regs->hw_power_battmonitor);
volt &= POWER_BATTMONITOR_BATT_VAL_MASK;
volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET;
volt *= 8;
return volt;
}
static int mxs_is_batt_ready(void)
{
return (mxs_get_batt_volt() >= 3600);
}
static int mxs_is_batt_good(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t volt = mxs_get_batt_volt();
if ((volt >= 2400) && (volt <= 4300))
return 1;
clrsetbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
&power_regs->hw_power_5vctrl_clr);
clrsetbits_le32(&power_regs->hw_power_charge,
POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
POWER_CHARGE_STOP_ILIMIT_10MA | 0x3);
writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr);
writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
&power_regs->hw_power_5vctrl_clr);
early_delay(500000);
volt = mxs_get_batt_volt();
if (volt >= 3500)
return 0;
if (volt >= 2400)
return 1;
writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
&power_regs->hw_power_charge_clr);
writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set);
return 0;
}
static void mxs_power_setup_5v_detect(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
/* Start 5V detection */
clrsetbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_VBUSVALID_TRSH_MASK,
POWER_5VCTRL_VBUSVALID_TRSH_4V4 |
POWER_5VCTRL_PWRUP_VBUS_CMPS);
}
static void mxs_src_power_init(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
/* Improve efficieny and reduce transient ripple */
writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST |
POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set);
clrsetbits_le32(&power_regs->hw_power_dclimits,
POWER_DCLIMITS_POSLIMIT_BUCK_MASK,
0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET);
setbits_le32(&power_regs->hw_power_battmonitor,
POWER_BATTMONITOR_EN_BATADJ);
/* Increase the RCSCALE level for quick DCDC response to dynamic load */
clrsetbits_le32(&power_regs->hw_power_loopctrl,
POWER_LOOPCTRL_EN_RCSCALE_MASK,
POWER_LOOPCTRL_RCSCALE_THRESH |
POWER_LOOPCTRL_EN_RCSCALE_8X);
clrsetbits_le32(&power_regs->hw_power_minpwr,
POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
/* 5V to battery handoff ... FIXME */
setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
early_delay(30);
clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
}
static void mxs_power_init_4p2_params(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
/* Setup 4P2 parameters */
clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK,
POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET));
clrsetbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_HEADROOM_ADJ_MASK,
0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET);
clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
POWER_DCDC4P2_DROPOUT_CTRL_MASK,
POWER_DCDC4P2_DROPOUT_CTRL_100MV |
POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL);
clrsetbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
}
static void mxs_enable_4p2_dcdc_input(int xfer)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo;
uint32_t prev_5v_brnout, prev_5v_droop;
prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) &
POWER_5VCTRL_PWDN_5VBRNOUT;
prev_5v_droop = readl(&power_regs->hw_power_ctrl) &
POWER_CTRL_ENIRQ_VDD5V_DROOP;
clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
&power_regs->hw_power_reset);
clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP);
if (xfer && (readl(&power_regs->hw_power_5vctrl) &
POWER_5VCTRL_ENABLE_DCDC)) {
return;
}
/*
* Recording orignal values that will be modified temporarlily
* to handle a chip bug. See chip errata for CQ ENGR00115837
*/
tmp = readl(&power_regs->hw_power_5vctrl);
vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK;
vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT;
pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO;
/*
* Disable mechanisms that get erroneously tripped by when setting
* the DCDC4P2 EN_DCDC
*/
clrbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_VBUSVALID_5VDETECT |
POWER_5VCTRL_VBUSVALID_TRSH_MASK);
writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set);
if (xfer) {
setbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_DCDC_XFER);
early_delay(20);
clrbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_DCDC_XFER);
setbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_ENABLE_DCDC);
} else {
setbits_le32(&power_regs->hw_power_dcdc4p2,
POWER_DCDC4P2_ENABLE_DCDC);
}
early_delay(25);
clrsetbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh);
if (vbus_5vdetect)
writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set);
if (!pwd_bo)
clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO);
while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ)
writel(POWER_CTRL_VBUS_VALID_IRQ,
&power_regs->hw_power_ctrl_clr);
if (prev_5v_brnout) {
writel(POWER_5VCTRL_PWDN_5VBRNOUT,
&power_regs->hw_power_5vctrl_set);
writel(POWER_RESET_UNLOCK_KEY,
&power_regs->hw_power_reset);
} else {
writel(POWER_5VCTRL_PWDN_5VBRNOUT,
&power_regs->hw_power_5vctrl_clr);
writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
&power_regs->hw_power_reset);
}
while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ)
writel(POWER_CTRL_VDD5V_DROOP_IRQ,
&power_regs->hw_power_ctrl_clr);
if (prev_5v_droop)
clrbits_le32(&power_regs->hw_power_ctrl,
POWER_CTRL_ENIRQ_VDD5V_DROOP);
else
setbits_le32(&power_regs->hw_power_ctrl,
POWER_CTRL_ENIRQ_VDD5V_DROOP);
}
static void mxs_power_init_4p2_regulator(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t tmp, tmp2;
setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2);
writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set);
writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
&power_regs->hw_power_5vctrl_clr);
clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK);
/* Power up the 4p2 rail and logic/control */
writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
&power_regs->hw_power_5vctrl_clr);
/*
* Start charging up the 4p2 capacitor. We ramp of this charge
* gradually to avoid large inrush current from the 5V cable which can
* cause transients/problems
*/
mxs_enable_4p2_dcdc_input(0);
if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
/*
* If we arrived here, we were unable to recover from mx23 chip
* errata 5837. 4P2 is disabled and sufficient battery power is
* not present. Exiting to not enable DCDC power during 5V
* connected state.
*/
clrbits_le32(&power_regs->hw_power_dcdc4p2,
POWER_DCDC4P2_ENABLE_DCDC);
writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
&power_regs->hw_power_5vctrl_set);
hang();
}
/*
* Here we set the 4p2 brownout level to something very close to 4.2V.
* We then check the brownout status. If the brownout status is false,
* the voltage is already close to the target voltage of 4.2V so we
* can go ahead and set the 4P2 current limit to our max target limit.
* If the brownout status is true, we need to ramp us the current limit
* so that we don't cause large inrush current issues. We step up the
* current limit until the brownout status is false or until we've
* reached our maximum defined 4p2 current limit.
*/
clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
POWER_DCDC4P2_BO_MASK,
22 << POWER_DCDC4P2_BO_OFFSET); /* 4.15V */
if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) {
setbits_le32(&power_regs->hw_power_5vctrl,
0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
} else {
tmp = (readl(&power_regs->hw_power_5vctrl) &
POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >>
POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
while (tmp < 0x3f) {
if (!(readl(&power_regs->hw_power_sts) &
POWER_STS_DCDC_4P2_BO)) {
tmp = readl(&power_regs->hw_power_5vctrl);
tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
early_delay(100);
writel(tmp, &power_regs->hw_power_5vctrl);
break;
} else {
tmp++;
tmp2 = readl(&power_regs->hw_power_5vctrl);
tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
tmp2 |= tmp <<
POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
writel(tmp2, &power_regs->hw_power_5vctrl);
early_delay(100);
}
}
}
clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
}
static void mxs_power_init_dcdc_4p2_source(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
if (!(readl(&power_regs->hw_power_dcdc4p2) &
POWER_DCDC4P2_ENABLE_DCDC)) {
hang();
}
mxs_enable_4p2_dcdc_input(1);
if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
clrbits_le32(&power_regs->hw_power_dcdc4p2,
POWER_DCDC4P2_ENABLE_DCDC);
writel(POWER_5VCTRL_ENABLE_DCDC,
&power_regs->hw_power_5vctrl_clr);
writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
&power_regs->hw_power_5vctrl_set);
}
}
static void mxs_power_enable_4p2(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t vdddctrl, vddactrl, vddioctrl;
uint32_t tmp;
vdddctrl = readl(&power_regs->hw_power_vdddctrl);
vddactrl = readl(&power_regs->hw_power_vddactrl);
vddioctrl = readl(&power_regs->hw_power_vddioctrl);
setbits_le32(&power_regs->hw_power_vdddctrl,
POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
POWER_VDDDCTRL_PWDN_BRNOUT);
setbits_le32(&power_regs->hw_power_vddactrl,
POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG |
POWER_VDDACTRL_PWDN_BRNOUT);
setbits_le32(&power_regs->hw_power_vddioctrl,
POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT);
mxs_power_init_4p2_params();
mxs_power_init_4p2_regulator();
/* Shutdown battery (none present) */
if (!mxs_is_batt_ready()) {
clrbits_le32(&power_regs->hw_power_dcdc4p2,
POWER_DCDC4P2_BO_MASK);
writel(POWER_CTRL_DCDC4P2_BO_IRQ,
&power_regs->hw_power_ctrl_clr);
writel(POWER_CTRL_ENIRQ_DCDC4P2_BO,
&power_regs->hw_power_ctrl_clr);
}
mxs_power_init_dcdc_4p2_source();
writel(vdddctrl, &power_regs->hw_power_vdddctrl);
early_delay(20);
writel(vddactrl, &power_regs->hw_power_vddactrl);
early_delay(20);
writel(vddioctrl, &power_regs->hw_power_vddioctrl);
/*
* Check if FET is enabled on either powerout and if so,
* disable load.
*/
tmp = 0;
tmp |= !(readl(&power_regs->hw_power_vdddctrl) &
POWER_VDDDCTRL_DISABLE_FET);
tmp |= !(readl(&power_regs->hw_power_vddactrl) &
POWER_VDDACTRL_DISABLE_FET);
tmp |= !(readl(&power_regs->hw_power_vddioctrl) &
POWER_VDDIOCTRL_DISABLE_FET);
if (tmp)
writel(POWER_CHARGE_ENABLE_LOAD,
&power_regs->hw_power_charge_clr);
}
static void mxs_boot_valid_5v(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
/*
* Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V
* disconnect event. FIXME
*/
writel(POWER_5VCTRL_VBUSVALID_5VDETECT,
&power_regs->hw_power_5vctrl_set);
/* Configure polarity to check for 5V disconnection. */
writel(POWER_CTRL_POLARITY_VBUSVALID |
POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
&power_regs->hw_power_ctrl_clr);
writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
&power_regs->hw_power_ctrl_clr);
mxs_power_enable_4p2();
}
static void mxs_powerdown(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset);
writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
&power_regs->hw_power_reset);
}
static void mxs_batt_boot(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC);
clrbits_le32(&power_regs->hw_power_dcdc4p2,
POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2);
writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr);
/* 5V to battery handoff. */
setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
early_delay(30);
clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr);
clrsetbits_le32(&power_regs->hw_power_minpwr,
POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
mxs_power_set_linreg();
clrbits_le32(&power_regs->hw_power_vdddctrl,
POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG);
clrbits_le32(&power_regs->hw_power_vddactrl,
POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG);
clrbits_le32(&power_regs->hw_power_vddioctrl,
POWER_VDDIOCTRL_DISABLE_FET);
setbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_PWD_CHARGE_4P2_MASK);
setbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_ENABLE_DCDC);
clrsetbits_le32(&power_regs->hw_power_5vctrl,
POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
}
static void mxs_handle_5v_conflict(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t tmp;
setbits_le32(&power_regs->hw_power_vddioctrl,
POWER_VDDIOCTRL_BO_OFFSET_MASK);
for (;;) {
tmp = readl(&power_regs->hw_power_sts);
if (tmp & POWER_STS_VDDIO_BO) {
/*
* VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes
* unreliable
*/
mxs_powerdown();
break;
}
if (tmp & POWER_STS_VDD5V_GT_VDDIO) {
mxs_boot_valid_5v();
break;
} else {
mxs_powerdown();
break;
}
if (tmp & POWER_STS_PSWITCH_MASK) {
mxs_batt_boot();
break;
}
}
}
static void mxs_5v_boot(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
/*
* NOTE: In original IMX-Bootlets, this also checks for VBUSVALID,
* but their implementation always returns 1 so we omit it here.
*/
if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
mxs_boot_valid_5v();
return;
}
early_delay(1000);
if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
mxs_boot_valid_5v();
return;
}
mxs_handle_5v_conflict();
}
static void mxs_init_batt_bo(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
/* Brownout at 3V */
clrsetbits_le32(&power_regs->hw_power_battmonitor,
POWER_BATTMONITOR_BRWNOUT_LVL_MASK,
15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET);
writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr);
writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr);
}
static void mxs_switch_vddd_to_dcdc_source(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
clrsetbits_le32(&power_regs->hw_power_vdddctrl,
POWER_VDDDCTRL_LINREG_OFFSET_MASK,
POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
clrbits_le32(&power_regs->hw_power_vdddctrl,
POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
POWER_VDDDCTRL_DISABLE_STEPPING);
}
static void mxs_power_configure_power_source(void)
{
int batt_ready, batt_good;
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
struct mxs_lradc_regs *lradc_regs =
(struct mxs_lradc_regs *)MXS_LRADC_BASE;
mxs_src_power_init();
if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
batt_ready = mxs_is_batt_ready();
if (batt_ready) {
/* 5V source detected, good battery detected. */
mxs_batt_boot();
} else {
batt_good = mxs_is_batt_good();
if (!batt_good) {
/* 5V source detected, bad battery detected. */
writel(LRADC_CONVERSION_AUTOMATIC,
&lradc_regs->hw_lradc_conversion_clr);
clrbits_le32(&power_regs->hw_power_battmonitor,
POWER_BATTMONITOR_BATT_VAL_MASK);
}
mxs_5v_boot();
}
} else {
/* 5V not detected, booting from battery. */
mxs_batt_boot();
}
mxs_power_clock2pll();
mxs_init_batt_bo();
mxs_switch_vddd_to_dcdc_source();
}
static void mxs_enable_output_rail_protection(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr);
setbits_le32(&power_regs->hw_power_vdddctrl,
POWER_VDDDCTRL_PWDN_BRNOUT);
setbits_le32(&power_regs->hw_power_vddactrl,
POWER_VDDACTRL_PWDN_BRNOUT);
setbits_le32(&power_regs->hw_power_vddioctrl,
POWER_VDDIOCTRL_PWDN_BRNOUT);
}
static int mxs_get_vddio_power_source_off(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t tmp;
if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
tmp = readl(&power_regs->hw_power_vddioctrl);
if (tmp & POWER_VDDIOCTRL_DISABLE_FET) {
if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
return 1;
}
}
if (!(readl(&power_regs->hw_power_5vctrl) &
POWER_5VCTRL_ENABLE_DCDC)) {
if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
return 1;
}
}
}
return 0;
}
static int mxs_get_vddd_power_source_off(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t tmp;
tmp = readl(&power_regs->hw_power_vdddctrl);
if (tmp & POWER_VDDDCTRL_DISABLE_FET) {
if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
return 1;
}
}
if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
if (!(readl(&power_regs->hw_power_5vctrl) &
POWER_5VCTRL_ENABLE_DCDC)) {
return 1;
}
}
if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) {
if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) {
return 1;
}
}
return 0;
}
struct mxs_vddx_cfg {
uint32_t *reg;
uint8_t step_mV;
uint16_t lowest_mV;
int (*powered_by_linreg)(void);
uint32_t trg_mask;
uint32_t bo_irq;
uint32_t bo_enirq;
uint32_t bo_offset_mask;
uint32_t bo_offset_offset;
};
static const struct mxs_vddx_cfg mxs_vddio_cfg = {
.reg = &(((struct mxs_power_regs *)MXS_POWER_BASE)->
hw_power_vddioctrl),
.step_mV = 50,
.lowest_mV = 2800,
.powered_by_linreg = mxs_get_vddio_power_source_off,
.trg_mask = POWER_VDDIOCTRL_TRG_MASK,
.bo_irq = POWER_CTRL_VDDIO_BO_IRQ,
.bo_enirq = POWER_CTRL_ENIRQ_VDDIO_BO,
.bo_offset_mask = POWER_VDDIOCTRL_BO_OFFSET_MASK,
.bo_offset_offset = POWER_VDDIOCTRL_BO_OFFSET_OFFSET,
};
static const struct mxs_vddx_cfg mxs_vddd_cfg = {
.reg = &(((struct mxs_power_regs *)MXS_POWER_BASE)->
hw_power_vdddctrl),
.step_mV = 25,
.lowest_mV = 800,
.powered_by_linreg = mxs_get_vddd_power_source_off,
.trg_mask = POWER_VDDDCTRL_TRG_MASK,
.bo_irq = POWER_CTRL_VDDD_BO_IRQ,
.bo_enirq = POWER_CTRL_ENIRQ_VDDD_BO,
.bo_offset_mask = POWER_VDDDCTRL_BO_OFFSET_MASK,
.bo_offset_offset = POWER_VDDDCTRL_BO_OFFSET_OFFSET,
};
static void mxs_power_set_vddx(const struct mxs_vddx_cfg *cfg,
uint32_t new_target, uint32_t new_brownout)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
uint32_t cur_target, diff, bo_int = 0;
uint32_t powered_by_linreg = 0;
int adjust_up, tmp;
new_brownout = DIV_ROUND(new_target - new_brownout, cfg->step_mV);
cur_target = readl(cfg->reg);
cur_target &= cfg->trg_mask;
cur_target *= cfg->step_mV;
cur_target += cfg->lowest_mV;
adjust_up = new_target > cur_target;
powered_by_linreg = cfg->powered_by_linreg();
if (adjust_up) {
if (powered_by_linreg) {
bo_int = readl(cfg->reg);
clrbits_le32(cfg->reg, cfg->bo_enirq);
}
setbits_le32(cfg->reg, cfg->bo_offset_mask);
}
do {
if (abs(new_target - cur_target) > 100) {
if (adjust_up)
diff = cur_target + 100;
else
diff = cur_target - 100;
} else {
diff = new_target;
}
diff -= cfg->lowest_mV;
diff /= cfg->step_mV;
clrsetbits_le32(cfg->reg, cfg->trg_mask, diff);
if (powered_by_linreg ||
(readl(&power_regs->hw_power_sts) &
POWER_STS_VDD5V_GT_VDDIO))
early_delay(500);
else {
for (;;) {
tmp = readl(&power_regs->hw_power_sts);
if (tmp & POWER_STS_DC_OK)
break;
}
}
cur_target = readl(cfg->reg);
cur_target &= cfg->trg_mask;
cur_target *= cfg->step_mV;
cur_target += cfg->lowest_mV;
} while (new_target > cur_target);
if (adjust_up && powered_by_linreg) {
writel(cfg->bo_irq, &power_regs->hw_power_ctrl_clr);
if (bo_int & cfg->bo_enirq)
setbits_le32(cfg->reg, cfg->bo_enirq);
}
clrsetbits_le32(cfg->reg, cfg->bo_offset_mask,
new_brownout << cfg->bo_offset_offset);
}
static void mxs_setup_batt_detect(void)
{
mxs_lradc_init();
mxs_lradc_enable_batt_measurement();
early_delay(10);
}
static void mxs_ungate_power(void)
{
#ifdef CONFIG_MX23
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
writel(POWER_CTRL_CLKGATE, &power_regs->hw_power_ctrl_clr);
#endif
}
void mxs_power_init(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
mxs_ungate_power();
mxs_power_clock2xtal();
mxs_power_clear_auto_restart();
mxs_power_set_linreg();
mxs_power_setup_5v_detect();
mxs_setup_batt_detect();
mxs_power_configure_power_source();
mxs_enable_output_rail_protection();
mxs_power_set_vddx(&mxs_vddio_cfg, 3300, 3150);
mxs_power_set_vddx(&mxs_vddd_cfg, 1500, 1000);
writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ |
POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ |
POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set);
early_delay(1000);
}
#ifdef CONFIG_SPL_MXS_PSWITCH_WAIT
void mxs_power_wait_pswitch(void)
{
struct mxs_power_regs *power_regs =
(struct mxs_power_regs *)MXS_POWER_BASE;
while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK))
;
}
#endif