u-boot/drivers/thermal/imx_tmu.c

672 lines
18 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2017~2020 NXP
*
*/
#include <config.h>
#include <common.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <dm/device-internal.h>
#include <dm/device.h>
#include <errno.h>
#include <fuse.h>
#include <linux/delay.h>
#include <malloc.h>
#include <thermal.h>
DECLARE_GLOBAL_DATA_PTR;
#define SITES_MAX 16
#define FLAGS_VER2 0x1
#define FLAGS_VER3 0x2
#define FLAGS_VER4 0x4
#define TMR_DISABLE 0x0
#define TMR_ME 0x80000000
#define TMR_ALPF 0x0c000000
#define TMTMIR_DEFAULT 0x00000002
#define TIER_DISABLE 0x0
#define TER_EN 0x80000000
#define TER_ADC_PD 0x40000000
#define TER_ALPF 0x3
#define IMX_TMU_POLLING_DELAY_MS 5000
/*
* i.MX TMU Registers
*/
struct imx_tmu_site_regs {
u32 tritsr; /* Immediate Temperature Site Register */
u32 tratsr; /* Average Temperature Site Register */
u8 res0[0x8];
};
struct imx_tmu_regs {
u32 tmr; /* Mode Register */
u32 tsr; /* Status Register */
u32 tmtmir; /* Temperature measurement interval Register */
u8 res0[0x14];
u32 tier; /* Interrupt Enable Register */
u32 tidr; /* Interrupt Detect Register */
u32 tiscr; /* Interrupt Site Capture Register */
u32 ticscr; /* Interrupt Critical Site Capture Register */
u8 res1[0x10];
u32 tmhtcrh; /* High Temperature Capture Register */
u32 tmhtcrl; /* Low Temperature Capture Register */
u8 res2[0x8];
u32 tmhtitr; /* High Temperature Immediate Threshold */
u32 tmhtatr; /* High Temperature Average Threshold */
u32 tmhtactr; /* High Temperature Average Crit Threshold */
u8 res3[0x24];
u32 ttcfgr; /* Temperature Configuration Register */
u32 tscfgr; /* Sensor Configuration Register */
u8 res4[0x78];
struct imx_tmu_site_regs site[SITES_MAX];
u8 res5[0x9f8];
u32 ipbrr0; /* IP Block Revision Register 0 */
u32 ipbrr1; /* IP Block Revision Register 1 */
u8 res6[0x310];
u32 ttr0cr; /* Temperature Range 0 Control Register */
u32 ttr1cr; /* Temperature Range 1 Control Register */
u32 ttr2cr; /* Temperature Range 2 Control Register */
u32 ttr3cr; /* Temperature Range 3 Control Register */
};
struct imx_tmu_regs_v4 {
u32 tmr; /* Mode Register */
u32 tsr; /* Status Register */
u32 tmsr; /* Monitor Site Register */
u32 tmtmir; /* Temperature measurement interval Register */
u8 res0[0x10];
u32 tier; /* Interrupt Enable Register */
u32 tidr; /* Interrupt Detect Register */
u8 res1[0x8];
u32 tiiscr; /* Interrupt Immediate Site Capture Register */
u32 tiascr; /* Interrupt Average Site Capture Register */
u32 ticscr; /* Interrupt Critical Site Capture Register */
u8 res2[0x4];
u32 tmhtcr; /* Monitor High Temperature Capture Register */
u32 tmltcr; /* MonitorLow Temperature Capture Register */
u32 tmrtrcr; /* Monitor Rising Temperature Rate Capture Register */
u32 tmftrcr; /* Monitor Falling Temperature Rate Capture Register */
u32 tmhtitr; /* Monitor High Temperature Immediate Threshold */
u32 tmhtatr; /* Monitor High Temperature Average Threshold */
u32 tmhtactr; /* Monitor High Temperature Average Crit Threshold */
u8 res3[0x4];
u32 tmltitr; /* Monitor Low Temperature Immediate Threshold */
u32 tmltatr; /* Monitor Low Temperature Average Threshold */
u32 tmltactr; /* Monitor Low Temperature Average Crit Threshold */
u8 res4[0x4];
u32 tmrtrctr; /* Monitor Rising Temperature Rate Critical Threshold Register */
u32 tmftrctr; /* Monitor Falling Temperature Rate Critical Threshold Register */
u8 res5[0x8];
u32 ttcfgr; /* Temperature Configuration Register */
u32 tscfgr; /* Sensor Configuration Register */
u8 res6[0x78];
u32 tritsr0; /* Immediate Temperature Site Register */
u32 tratsr0; /* Average Temperature Site Register */
u8 res7[0xdf8];
u32 tcmcfg; /* Central Module Configuration */
u8 res8[0xc];
u32 ttrcr[16]; /* Temperature Range Control Register */
};
struct imx_tmu_regs_v2 {
u32 ter; /* TMU enable Register */
u32 tsr; /* Status Register */
u32 tier; /* Interrupt enable register */
u32 tidr; /* Interrupt detect register */
u32 tmhtitr; /* Monitor high temperature immediate threshold register */
u32 tmhtatr; /* Monitor high temperature average threshold register */
u32 tmhtactr; /* TMU monitor high temperature average critical threshold register */
u32 tscr; /* Sensor value capture register */
u32 tritsr; /* Report immediate temperature site register 0 */
u32 tratsr; /* Report average temperature site register 0 */
u32 tasr; /* Amplifier setting register */
u32 ttmc; /* Test MUX control */
u32 tcaliv;
};
struct imx_tmu_regs_v3 {
u32 ter; /* TMU enable Register */
u32 tps; /* Status Register */
u32 tier; /* Interrupt enable register */
u32 tidr; /* Interrupt detect register */
u32 tmhtitr; /* Monitor high temperature immediate threshold register */
u32 tmhtatr; /* Monitor high temperature average threshold register */
u32 tmhtactr; /* TMU monitor high temperature average critical threshold register */
u32 tscr; /* Sensor value capture register */
u32 tritsr; /* Report immediate temperature site register 0 */
u32 tratsr; /* Report average temperature site register 0 */
u32 tasr; /* Amplifier setting register */
u32 ttmc; /* Test MUX control */
u32 tcaliv0;
u32 tcaliv1;
u32 tcaliv_m40;
u32 trim;
};
union tmu_regs {
struct imx_tmu_regs regs_v1;
struct imx_tmu_regs_v2 regs_v2;
struct imx_tmu_regs_v3 regs_v3;
struct imx_tmu_regs_v4 regs_v4;
};
struct imx_tmu_plat {
int critical;
int alert;
int polling_delay;
int id;
bool zone_node;
union tmu_regs *regs;
};
static int read_temperature(struct udevice *dev, int *temp)
{
struct imx_tmu_plat *pdata = dev_get_plat(dev);
ulong drv_data = dev_get_driver_data(dev);
u32 val;
u32 retry = 10;
u32 valid = 0;
do {
mdelay(100);
retry--;
if (drv_data & FLAGS_VER3) {
val = readl(&pdata->regs->regs_v3.tritsr);
valid = val & (1 << (30 + pdata->id));
} else if (drv_data & FLAGS_VER2) {
val = readl(&pdata->regs->regs_v2.tritsr);
/*
* Check if TEMP is in valid range, the V bit in TRITSR
* only reflects the RAW uncalibrated data
*/
valid = ((val & 0xff) < 10 || (val & 0xff) > 125) ? 0 : 1;
} else if (drv_data & FLAGS_VER4) {
val = readl(&pdata->regs->regs_v4.tritsr0);
valid = val & 0x80000000;
} else {
val = readl(&pdata->regs->regs_v1.site[pdata->id].tritsr);
valid = val & 0x80000000;
}
} while (!valid && retry > 0);
if (retry > 0) {
if (drv_data & FLAGS_VER3) {
val = (val >> (pdata->id * 16)) & 0xff;
if (val & 0x80) /* Negative */
val = (~(val & 0x7f) + 1);
*temp = val;
if (*temp < -40 || *temp > 125) /* Check the range */
return -EINVAL;
*temp *= 1000;
} else if (drv_data & FLAGS_VER4) {
*temp = (val & 0x1ff) * 1000;
if (val & 0x200)
*temp += 500;
/* Convert Kelvin to Celsius */
*temp -= 273000;
} else {
*temp = (val & 0xff) * 1000;
}
} else {
return -EINVAL;
}
return 0;
}
int imx_tmu_get_temp(struct udevice *dev, int *temp)
{
struct imx_tmu_plat *pdata = dev_get_plat(dev);
int cpu_tmp = 0;
int ret;
ret = read_temperature(dev, &cpu_tmp);
if (ret)
return ret;
while (cpu_tmp >= pdata->alert) {
dev_crit(dev, "CPU Temperature (%dC) is beyond alert (%dC), close to critical (%dC) waiting...\n",
cpu_tmp / 1000, pdata->alert / 1000, pdata->critical / 1000);
mdelay(pdata->polling_delay);
ret = read_temperature(dev, &cpu_tmp);
if (ret)
return ret;
}
*temp = cpu_tmp / 1000;
return 0;
}
static const struct dm_thermal_ops imx_tmu_ops = {
.get_temp = imx_tmu_get_temp,
};
static int imx_tmu_calibration(struct udevice *dev)
{
int i, val, len, ret;
int index;
u32 range[4];
const fdt32_t *calibration;
struct imx_tmu_plat *pdata = dev_get_plat(dev);
ulong drv_data = dev_get_driver_data(dev);
dev_dbg(dev, "%s\n", __func__);
if (drv_data & (FLAGS_VER2 | FLAGS_VER3))
return 0;
if (drv_data & FLAGS_VER4) {
calibration = dev_read_prop(dev, "fsl,tmu-calibration", &len);
if (!calibration || len % 8 || len > 128) {
printf("TMU: invalid calibration data.\n");
return -ENODEV;
}
for (i = 0; i < len; i += 8, calibration += 2) {
index = i / 8;
writel(index, &pdata->regs->regs_v4.ttcfgr);
val = fdt32_to_cpu(*calibration);
writel(val, &pdata->regs->regs_v4.tscfgr);
val = fdt32_to_cpu(*(calibration + 1));
writel((1 << 31) | val, &pdata->regs->regs_v4.ttrcr[index]);
}
return 0;
}
ret = dev_read_u32_array(dev, "fsl,tmu-range", range, 4);
if (ret) {
dev_err(dev, "TMU: missing calibration range, ret = %d.\n", ret);
return ret;
}
/* Init temperature range registers */
writel(range[0], &pdata->regs->regs_v1.ttr0cr);
writel(range[1], &pdata->regs->regs_v1.ttr1cr);
writel(range[2], &pdata->regs->regs_v1.ttr2cr);
writel(range[3], &pdata->regs->regs_v1.ttr3cr);
calibration = dev_read_prop(dev, "fsl,tmu-calibration", &len);
if (!calibration || len % 8) {
dev_err(dev, "TMU: invalid calibration data.\n");
return -ENODEV;
}
for (i = 0; i < len; i += 8, calibration += 2) {
val = fdt32_to_cpu(*calibration);
writel(val, &pdata->regs->regs_v1.ttcfgr);
val = fdt32_to_cpu(*(calibration + 1));
writel(val, &pdata->regs->regs_v1.tscfgr);
}
return 0;
}
#if defined(CONFIG_IMX8MM) || defined(CONFIG_IMX8MN)
static void imx_tmu_mx8mm_mx8mn_init(struct udevice *dev)
{
/* Load TCALIV and TASR from fuses */
struct ocotp_regs *ocotp =
(struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[3];
struct fuse_bank3_regs *fuse =
(struct fuse_bank3_regs *)bank->fuse_regs;
struct imx_tmu_plat *pdata = dev_get_plat(dev);
void *reg_base = (void *)pdata->regs;
u32 tca_rt, tca_hr, tca_en;
u32 buf_vref, buf_slope;
tca_rt = fuse->ana0 & 0xFF;
tca_hr = (fuse->ana0 & 0xFF00) >> 8;
tca_en = (fuse->ana0 & 0x2000000) >> 25;
buf_vref = (fuse->ana0 & 0x1F00000) >> 20;
buf_slope = (fuse->ana0 & 0xF0000) >> 16;
writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28);
writel((tca_en << 31) | (tca_hr << 16) | tca_rt,
(ulong)reg_base + 0x30);
}
#else
static inline void imx_tmu_mx8mm_mx8mn_init(struct udevice *dev) { }
#endif
#if defined(CONFIG_IMX8MP)
static void imx_tmu_mx8mp_init(struct udevice *dev)
{
/* Load TCALIV0/1/m40 and TRIM from fuses */
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[38];
struct fuse_bank38_regs *fuse =
(struct fuse_bank38_regs *)bank->fuse_regs;
struct fuse_bank *bank2 = &ocotp->bank[39];
struct fuse_bank39_regs *fuse2 =
(struct fuse_bank39_regs *)bank2->fuse_regs;
struct imx_tmu_plat *pdata = dev_get_plat(dev);
void *reg_base = (void *)pdata->regs;
u32 buf_vref, buf_slope, bjt_cur, vlsb, bgr;
u32 reg;
u32 tca40[2], tca25[2], tca105[2];
/* For blank sample */
if (!fuse->ana_trim2 && !fuse->ana_trim3 &&
!fuse->ana_trim4 && !fuse2->ana_trim5) {
/* Use a default 25C binary codes */
tca25[0] = 1596;
tca25[1] = 1596;
writel(tca25[0], (ulong)reg_base + 0x30);
writel(tca25[1], (ulong)reg_base + 0x34);
return;
}
buf_vref = (fuse->ana_trim2 & 0xc0) >> 6;
buf_slope = (fuse->ana_trim2 & 0xF00) >> 8;
bjt_cur = (fuse->ana_trim2 & 0xF000) >> 12;
bgr = (fuse->ana_trim2 & 0xF0000) >> 16;
vlsb = (fuse->ana_trim2 & 0xF00000) >> 20;
writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28);
reg = (bgr << 28) | (bjt_cur << 20) | (vlsb << 12) | (1 << 7);
writel(reg, (ulong)reg_base + 0x3c);
tca40[0] = (fuse->ana_trim3 & 0xFFF0000) >> 16;
tca25[0] = (fuse->ana_trim3 & 0xF0000000) >> 28;
tca25[0] |= ((fuse->ana_trim4 & 0xFF) << 4);
tca105[0] = (fuse->ana_trim4 & 0xFFF00) >> 8;
tca40[1] = (fuse->ana_trim4 & 0xFFF00000) >> 20;
tca25[1] = fuse2->ana_trim5 & 0xFFF;
tca105[1] = (fuse2->ana_trim5 & 0xFFF000) >> 12;
/* use 25c for 1p calibration */
writel(tca25[0] | (tca105[0] << 16), (ulong)reg_base + 0x30);
writel(tca25[1] | (tca105[1] << 16), (ulong)reg_base + 0x34);
writel(tca40[0] | (tca40[1] << 16), (ulong)reg_base + 0x38);
}
#else
static inline void imx_tmu_mx8mp_init(struct udevice *dev) { }
#endif
static inline void imx_tmu_mx93_init(struct udevice *dev) { }
static void imx_tmu_arch_init(struct udevice *dev)
{
if (is_imx8mm() || is_imx8mn())
imx_tmu_mx8mm_mx8mn_init(dev);
else if (is_imx8mp())
imx_tmu_mx8mp_init(dev);
else if (is_imx93())
imx_tmu_mx93_init(dev);
else
dev_err(dev, "Unsupported SoC, TMU calibration not loaded!\n");
}
static void imx_tmu_init(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_plat(dev);
ulong drv_data = dev_get_driver_data(dev);
dev_dbg(dev, "%s\n", __func__);
if (drv_data & FLAGS_VER3) {
/* Disable monitoring */
writel(0x0, &pdata->regs->regs_v3.ter);
/* Disable interrupt, using polling instead */
writel(0x0, &pdata->regs->regs_v3.tier);
} else if (drv_data & FLAGS_VER2) {
/* Disable monitoring */
writel(0x0, &pdata->regs->regs_v2.ter);
/* Disable interrupt, using polling instead */
writel(0x0, &pdata->regs->regs_v2.tier);
} else if (drv_data & FLAGS_VER4) {
/* Disable monitoring */
writel(TMR_DISABLE, &pdata->regs->regs_v4.tmr);
/* Disable interrupt, using polling instead */
writel(TIER_DISABLE, &pdata->regs->regs_v4.tier);
/* Set update_interval */
writel(TMTMIR_DEFAULT, &pdata->regs->regs_v4.tmtmir);
} else {
/* Disable monitoring */
writel(TMR_DISABLE, &pdata->regs->regs_v1.tmr);
/* Disable interrupt, using polling instead */
writel(TIER_DISABLE, &pdata->regs->regs_v1.tier);
/* Set update_interval */
writel(TMTMIR_DEFAULT, &pdata->regs->regs_v1.tmtmir);
}
imx_tmu_arch_init(dev);
}
static int imx_tmu_enable_msite(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_plat(dev);
ulong drv_data = dev_get_driver_data(dev);
u32 reg;
dev_dbg(dev, "%s\n", __func__);
if (!pdata->regs)
return -EIO;
if (drv_data & FLAGS_VER3) {
reg = readl(&pdata->regs->regs_v3.ter);
reg &= ~TER_EN;
writel(reg, &pdata->regs->regs_v3.ter);
writel(pdata->id << 30, &pdata->regs->regs_v3.tps);
reg &= ~TER_ALPF;
reg |= 0x1;
reg &= ~TER_ADC_PD;
writel(reg, &pdata->regs->regs_v3.ter);
/* Enable monitor */
reg |= TER_EN;
writel(reg, &pdata->regs->regs_v3.ter);
} else if (drv_data & FLAGS_VER2) {
reg = readl(&pdata->regs->regs_v2.ter);
reg &= ~TER_EN;
writel(reg, &pdata->regs->regs_v2.ter);
reg &= ~TER_ALPF;
reg |= 0x1;
writel(reg, &pdata->regs->regs_v2.ter);
/* Enable monitor */
reg |= TER_EN;
writel(reg, &pdata->regs->regs_v2.ter);
} else if (drv_data & FLAGS_VER4) {
reg = readl(&pdata->regs->regs_v4.tcmcfg);
reg |= (1 << 30) | (1 << 28);
reg &= ~0xF000; /* set SAR clk = IPG clk /16 */
writel(reg, &pdata->regs->regs_v4.tcmcfg);
/* Set ALPF*/
reg = readl(&pdata->regs->regs_v4.tmr);
reg |= TMR_ALPF;
writel(reg, &pdata->regs->regs_v4.tmr);
writel(1, &pdata->regs->regs_v4.tmsr);
/* Enable ME */
reg |= TMR_ME;
writel(reg, &pdata->regs->regs_v4.tmr);
} else {
/* Clear the ME before setting MSITE and ALPF*/
reg = readl(&pdata->regs->regs_v1.tmr);
reg &= ~TMR_ME;
writel(reg, &pdata->regs->regs_v1.tmr);
reg |= 1 << (15 - pdata->id);
reg |= TMR_ALPF;
writel(reg, &pdata->regs->regs_v1.tmr);
/* Enable ME */
reg |= TMR_ME;
writel(reg, &pdata->regs->regs_v1.tmr);
}
return 0;
}
static int imx_tmu_bind(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_plat(dev);
int ret;
ofnode node, offset;
const char *name;
const void *prop;
int minc, maxc;
dev_dbg(dev, "%s\n", __func__);
prop = dev_read_prop(dev, "compatible", NULL);
if (!prop)
return 0;
pdata->zone_node = 1;
/* default alert/crit temps based on temp grade */
get_cpu_temp_grade(&minc, &maxc);
pdata->critical = maxc * 1000;
pdata->alert = (maxc - 10) * 1000;
node = ofnode_path("/thermal-zones");
ofnode_for_each_subnode(offset, node) {
/* Bind the subnode to this driver */
name = ofnode_get_name(offset);
ret = device_bind_with_driver_data(dev, dev->driver, name,
dev->driver_data, offset,
NULL);
if (ret)
dev_err(dev, "Error binding driver: %d\n", ret);
}
return 0;
}
static int imx_tmu_parse_fdt(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_plat(dev), *p_parent_data;
struct ofnode_phandle_args args;
ofnode trips_np;
int ret;
dev_dbg(dev, "%s\n", __func__);
pdata->polling_delay = IMX_TMU_POLLING_DELAY_MS;
if (pdata->zone_node) {
pdata->regs = (union tmu_regs *)dev_read_addr_ptr(dev);
if (!pdata->regs)
return -EINVAL;
return 0;
}
p_parent_data = dev_get_plat(dev->parent);
if (p_parent_data->zone_node)
pdata->regs = p_parent_data->regs;
ret = dev_read_phandle_with_args(dev, "thermal-sensors",
"#thermal-sensor-cells",
0, 0, &args);
if (ret)
return ret;
if (!ofnode_equal(args.node, dev_ofnode(dev->parent)))
return -EFAULT;
if (args.args_count >= 1)
pdata->id = args.args[0];
else
pdata->id = 0;
dev_dbg(dev, "args.args_count %d, id %d\n", args.args_count, pdata->id);
pdata->polling_delay = dev_read_u32_default(dev, "polling-delay",
IMX_TMU_POLLING_DELAY_MS);
trips_np = ofnode_path("/thermal-zones/cpu-thermal/trips");
ofnode_for_each_subnode(trips_np, trips_np) {
const char *type;
type = ofnode_get_property(trips_np, "type", NULL);
if (!type)
continue;
if (!strcmp(type, "critical"))
pdata->critical = ofnode_read_u32_default(trips_np, "temperature", 85);
else if (strcmp(type, "passive") == 0)
pdata->alert = ofnode_read_u32_default(trips_np, "temperature", 80);
else
continue;
}
dev_dbg(dev, "id %d polling_delay %d, critical %d, alert %d\n",
pdata->id, pdata->polling_delay, pdata->critical, pdata->alert);
return 0;
}
static int imx_tmu_probe(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_plat(dev);
int ret;
ret = imx_tmu_parse_fdt(dev);
if (ret) {
dev_err(dev, "Error in parsing TMU FDT %d\n", ret);
return ret;
}
if (pdata->zone_node) {
imx_tmu_init(dev);
imx_tmu_calibration(dev);
imx_tmu_enable_msite(dev);
} else {
imx_tmu_enable_msite(dev);
}
return 0;
}
static const struct udevice_id imx_tmu_ids[] = {
{ .compatible = "fsl,imx8mq-tmu", },
{ .compatible = "fsl,imx8mm-tmu", .data = FLAGS_VER2, },
{ .compatible = "fsl,imx8mp-tmu", .data = FLAGS_VER3, },
{ .compatible = "fsl,imx93-tmu", .data = FLAGS_VER4, },
{ }
};
U_BOOT_DRIVER(imx_tmu) = {
.name = "imx_tmu",
.id = UCLASS_THERMAL,
.ops = &imx_tmu_ops,
.of_match = imx_tmu_ids,
.bind = imx_tmu_bind,
.probe = imx_tmu_probe,
.plat_auto = sizeof(struct imx_tmu_plat),
.flags = DM_FLAG_PRE_RELOC,
};