u-boot/drivers/mtd/mtdpart.c

1057 lines
27 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Simple MTD partitioning layer
*
* Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
* Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
* Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
*
*/
#ifndef __UBOOT__
#include <log.h>
#include <dm/devres.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/kmod.h>
#endif
#include <common.h>
#include <malloc.h>
#include <linux/bug.h>
#include <linux/errno.h>
#include <linux/compat.h>
#include <ubi_uboot.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/err.h>
#include <linux/sizes.h>
#include "mtdcore.h"
#ifndef __UBOOT__
static DEFINE_MUTEX(mtd_partitions_mutex);
#else
DEFINE_MUTEX(mtd_partitions_mutex);
#endif
#ifdef __UBOOT__
/* from mm/util.c */
/**
* kstrdup - allocate space for and copy an existing string
* @s: the string to duplicate
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
*/
char *kstrdup(const char *s, gfp_t gfp)
{
size_t len;
char *buf;
if (!s)
return NULL;
len = strlen(s) + 1;
buf = kmalloc(len, gfp);
if (buf)
memcpy(buf, s, len);
return buf;
}
#endif
#define MTD_SIZE_REMAINING (~0LLU)
#define MTD_OFFSET_NOT_SPECIFIED (~0LLU)
bool mtd_partitions_used(struct mtd_info *master)
{
struct mtd_info *slave;
list_for_each_entry(slave, &master->partitions, node) {
if (slave->usecount)
return true;
}
return false;
}
/**
* mtd_parse_partition - Parse @mtdparts partition definition, fill @partition
* with it and update the @mtdparts string pointer.
*
* The partition name is allocated and must be freed by the caller.
*
* This function is widely inspired from part_parse (mtdparts.c).
*
* @mtdparts: String describing the partition with mtdparts command syntax
* @partition: MTD partition structure to fill
*
* Return: 0 on success, an error otherwise.
*/
static int mtd_parse_partition(const char **_mtdparts,
struct mtd_partition *partition)
{
const char *mtdparts = *_mtdparts;
const char *name = NULL;
int name_len;
char *buf;
/* Ensure the partition structure is empty */
memset(partition, 0, sizeof(struct mtd_partition));
/* Fetch the partition size */
if (*mtdparts == '-') {
/* Assign all remaining space to this partition */
partition->size = MTD_SIZE_REMAINING;
mtdparts++;
} else {
partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0);
if (partition->size < SZ_4K) {
printf("Minimum partition size 4kiB, %lldB requested\n",
partition->size);
return -EINVAL;
}
}
/* Check for the offset */
partition->offset = MTD_OFFSET_NOT_SPECIFIED;
if (*mtdparts == '@') {
mtdparts++;
partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0);
}
/* Now look for the name */
if (*mtdparts == '(') {
name = ++mtdparts;
mtdparts = strchr(name, ')');
if (!mtdparts) {
printf("No closing ')' found in partition name\n");
return -EINVAL;
}
name_len = mtdparts - name + 1;
if ((name_len - 1) == 0) {
printf("Empty partition name\n");
return -EINVAL;
}
mtdparts++;
} else {
/* Name will be of the form size@offset */
name_len = 22;
}
/* Check if the partition is read-only */
if (strncmp(mtdparts, "ro", 2) == 0) {
partition->mask_flags |= MTD_WRITEABLE;
mtdparts += 2;
}
/* Check for a potential next partition definition */
if (*mtdparts == ',') {
if (partition->size == MTD_SIZE_REMAINING) {
printf("No partitions allowed after a fill-up\n");
return -EINVAL;
}
++mtdparts;
} else if ((*mtdparts == ';') || (*mtdparts == '\0')) {
/* NOP */
} else {
printf("Unexpected character '%c' in mtdparts\n", *mtdparts);
return -EINVAL;
}
/*
* Allocate a buffer for the name and either copy the provided name or
* auto-generate it with the form 'size@offset'.
*/
buf = malloc(name_len);
if (!buf)
return -ENOMEM;
if (name)
strncpy(buf, name, name_len - 1);
else
snprintf(buf, name_len, "0x%08llx@0x%08llx",
partition->size, partition->offset);
buf[name_len - 1] = '\0';
partition->name = buf;
*_mtdparts = mtdparts;
return 0;
}
/**
* mtd_parse_partitions - Create a partition array from an mtdparts definition
*
* Stateless function that takes a @parent MTD device, a string @_mtdparts
* describing the partitions (with the "mtdparts" command syntax) and creates
* the corresponding MTD partition structure array @_parts. Both the name and
* the structure partition itself must be freed freed, the caller may use
* @mtd_free_parsed_partitions() for this purpose.
*
* @parent: MTD device which contains the partitions
* @_mtdparts: Pointer to a string describing the partitions with "mtdparts"
* command syntax.
* @_parts: Allocated array containing the partitions, must be freed by the
* caller.
* @_nparts: Size of @_parts array.
*
* Return: 0 on success, an error otherwise.
*/
int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts,
struct mtd_partition **_parts, int *_nparts)
{
struct mtd_partition partition = {}, *parts;
const char *mtdparts = *_mtdparts;
uint64_t cur_off = 0, cur_sz = 0;
int nparts = 0;
int ret, idx;
u64 sz;
/* First, iterate over the partitions until we know their number */
while (mtdparts[0] != '\0' && mtdparts[0] != ';') {
ret = mtd_parse_partition(&mtdparts, &partition);
if (ret)
return ret;
free((char *)partition.name);
nparts++;
}
/* Allocate an array of partitions to give back to the caller */
parts = malloc(sizeof(*parts) * nparts);
if (!parts) {
printf("Not enough space to save partitions meta-data\n");
return -ENOMEM;
}
/* Iterate again over each partition to save the data in our array */
for (idx = 0; idx < nparts; idx++) {
ret = mtd_parse_partition(_mtdparts, &parts[idx]);
if (ret)
return ret;
if (parts[idx].size == MTD_SIZE_REMAINING)
parts[idx].size = parent->size - cur_sz;
cur_sz += parts[idx].size;
sz = parts[idx].size;
if (sz < parent->writesize || do_div(sz, parent->writesize)) {
printf("Partition size must be a multiple of %d\n",
parent->writesize);
return -EINVAL;
}
if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED)
parts[idx].offset = cur_off;
cur_off += parts[idx].size;
parts[idx].ecclayout = parent->ecclayout;
}
/* Offset by one mtdparts to point to the next device if any */
if (*_mtdparts[0] == ';')
(*_mtdparts)++;
*_parts = parts;
*_nparts = nparts;
return 0;
}
/**
* mtd_free_parsed_partitions - Free dynamically allocated partitions
*
* Each successful call to @mtd_parse_partitions must be followed by a call to
* @mtd_free_parsed_partitions to free any allocated array during the parsing
* process.
*
* @parts: Array containing the partitions that will be freed.
* @nparts: Size of @parts array.
*/
void mtd_free_parsed_partitions(struct mtd_partition *parts,
unsigned int nparts)
{
int i;
for (i = 0; i < nparts; i++)
free((char *)parts[i].name);
free(parts);
}
/*
* MTD methods which simply translate the effective address and pass through
* to the _real_ device.
*/
static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct mtd_ecc_stats stats;
int res;
stats = mtd->parent->ecc_stats;
res = mtd->parent->_read(mtd->parent, from + mtd->offset, len,
retlen, buf);
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
if (unlikely(mtd_is_eccerr(res)))
mtd->ecc_stats.failed +=
mtd->parent->ecc_stats.failed - stats.failed;
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
else
mtd->ecc_stats.corrected +=
mtd->parent->ecc_stats.corrected - stats.corrected;
return res;
}
#ifndef __UBOOT__
static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, void **virt, resource_size_t *phys)
{
return mtd->parent->_point(mtd->parent, from + mtd->offset, len,
retlen, virt, phys);
}
static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len);
}
#endif
static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
unsigned long len,
unsigned long offset,
unsigned long flags)
{
offset += mtd->offset;
return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags);
}
static int part_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int res;
if (from >= mtd->size)
return -EINVAL;
if (ops->datbuf && from + ops->len > mtd->size)
return -EINVAL;
/*
* If OOB is also requested, make sure that we do not read past the end
* of this partition.
*/
if (ops->oobbuf) {
size_t len, pages;
if (ops->mode == MTD_OPS_AUTO_OOB)
len = mtd->oobavail;
else
len = mtd->oobsize;
pages = mtd_div_by_ws(mtd->size, mtd);
pages -= mtd_div_by_ws(from, mtd);
if (ops->ooboffs + ops->ooblen > pages * len)
return -EINVAL;
}
res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops);
if (unlikely(res)) {
if (mtd_is_bitflip(res))
mtd->ecc_stats.corrected++;
if (mtd_is_eccerr(res))
mtd->ecc_stats.failed++;
}
return res;
}
static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return mtd->parent->_read_user_prot_reg(mtd->parent, from, len,
retlen, buf);
}
static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen,
buf);
}
static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len,
retlen, buf);
}
static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen,
buf);
}
static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
return mtd->parent->_write(mtd->parent, to + mtd->offset, len,
retlen, buf);
}
static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len,
retlen, buf);
}
static int part_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
if (to >= mtd->size)
return -EINVAL;
if (ops->datbuf && to + ops->len > mtd->size)
return -EINVAL;
return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops);
}
static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return mtd->parent->_write_user_prot_reg(mtd->parent, from, len,
retlen, buf);
}
static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len)
{
return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len);
}
#ifndef __UBOOT__
static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
return mtd->parent->_writev(mtd->parent, vecs, count,
to + mtd->offset, retlen);
}
#endif
static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
{
int ret;
instr->addr += mtd->offset;
mtd: mtdpart: Make mtdpart's _erase method sane The _erase() method of the mtdpart driver, part_erase(), currently implements offset shifting (for given mtdpart partition) in a weird way: 1. part_erase() adds partition offset to block address 2. parent driver's _erase() method is called 3. parent driver's _erase() method calls mtd_erase_callback() 4. mtd_erase_callback() subtracts partition offset from block address so that the callback function is given correct address The problem here is that if the parent's driver does not call mtd_erase_callback() in some scenario (this was recently a case for spi_nor_erase(), which did not call mtd_erase_callback() at all), the offset is not shifted back. Moreover the code would be more readable if part_erase() not only added partition offset before calling parent's _erase(), but also subtracted it back afterwards. Currently the mtd_erase_callback() is expected to do this subtracting since it does have to do it anyway. Add the more steps to this procedure: 5. mtd_erase_callback() adds partition offset to block address so that it returns the the erase_info structure members as it received them 6. part_erase() subtracts partition offset from block address This makes the code more logical and also prevents errors in case parent's driver does not call mtd_erase_callback() for some reason. (BTW, the purpose of mtd_erase_callback() in Linux is to inform the caller that it is done, since in Linux erasing is done asynchronously. We are abusing the purpose of mtd_erase_callback() in U-Boot for completely different purpose. The callback function itself has empty implementation in all cases in U-Boot.) Signed-off-by: Marek Behún <marek.behun@nic.cz> Reviewed-by: Simon Glass <sjg@chromium.org> Tested-by: Masami Hiramatsu <masami.hiramatsu@linaro.org>
2021-10-05 13:56:05 +00:00
ret = mtd->parent->_erase(mtd->parent, instr);
mtd: mtdpart: Make mtdpart's _erase method sane The _erase() method of the mtdpart driver, part_erase(), currently implements offset shifting (for given mtdpart partition) in a weird way: 1. part_erase() adds partition offset to block address 2. parent driver's _erase() method is called 3. parent driver's _erase() method calls mtd_erase_callback() 4. mtd_erase_callback() subtracts partition offset from block address so that the callback function is given correct address The problem here is that if the parent's driver does not call mtd_erase_callback() in some scenario (this was recently a case for spi_nor_erase(), which did not call mtd_erase_callback() at all), the offset is not shifted back. Moreover the code would be more readable if part_erase() not only added partition offset before calling parent's _erase(), but also subtracted it back afterwards. Currently the mtd_erase_callback() is expected to do this subtracting since it does have to do it anyway. Add the more steps to this procedure: 5. mtd_erase_callback() adds partition offset to block address so that it returns the the erase_info structure members as it received them 6. part_erase() subtracts partition offset from block address This makes the code more logical and also prevents errors in case parent's driver does not call mtd_erase_callback() for some reason. (BTW, the purpose of mtd_erase_callback() in Linux is to inform the caller that it is done, since in Linux erasing is done asynchronously. We are abusing the purpose of mtd_erase_callback() in U-Boot for completely different purpose. The callback function itself has empty implementation in all cases in U-Boot.) Signed-off-by: Marek Behún <marek.behun@nic.cz> Reviewed-by: Simon Glass <sjg@chromium.org> Tested-by: Masami Hiramatsu <masami.hiramatsu@linaro.org>
2021-10-05 13:56:05 +00:00
if (ret && instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= mtd->offset;
instr->addr -= mtd->offset;
return ret;
}
static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len);
}
static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len);
}
static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len);
}
static void part_sync(struct mtd_info *mtd)
{
mtd->parent->_sync(mtd->parent);
}
#ifndef __UBOOT__
static int part_suspend(struct mtd_info *mtd)
{
return mtd->parent->_suspend(mtd->parent);
}
static void part_resume(struct mtd_info *mtd)
{
mtd->parent->_resume(mtd->parent);
}
#endif
static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
ofs += mtd->offset;
return mtd->parent->_block_isreserved(mtd->parent, ofs);
}
static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
ofs += mtd->offset;
return mtd->parent->_block_isbad(mtd->parent, ofs);
}
static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
int res;
ofs += mtd->offset;
res = mtd->parent->_block_markbad(mtd->parent, ofs);
if (!res)
mtd->ecc_stats.badblocks++;
return res;
}
static inline void free_partition(struct mtd_info *p)
{
kfree(p->name);
kfree(p);
}
/*
* This function unregisters and destroy all slave MTD objects which are
* attached to the given master MTD object, recursively.
*/
static int do_del_mtd_partitions(struct mtd_info *master)
{
struct mtd_info *slave, *next;
int ret, err = 0;
list_for_each_entry_safe(slave, next, &master->partitions, node) {
if (mtd_has_partitions(slave))
del_mtd_partitions(slave);
debug("Deleting %s MTD partition\n", slave->name);
ret = del_mtd_device(slave);
if (ret < 0) {
printf("Error when deleting partition \"%s\" (%d)\n",
slave->name, ret);
err = ret;
continue;
}
list_del(&slave->node);
free_partition(slave);
}
return err;
}
int del_mtd_partitions(struct mtd_info *master)
{
int ret;
debug("Deleting MTD partitions on \"%s\":\n", master->name);
mutex_lock(&mtd_partitions_mutex);
ret = do_del_mtd_partitions(master);
mutex_unlock(&mtd_partitions_mutex);
return ret;
}
static struct mtd_info *allocate_partition(struct mtd_info *master,
const struct mtd_partition *part,
int partno, uint64_t cur_offset)
{
struct mtd_info *slave;
char *name;
/* allocate the partition structure */
slave = kzalloc(sizeof(*slave), GFP_KERNEL);
name = kstrdup(part->name, GFP_KERNEL);
if (!name || !slave) {
printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
master->name);
kfree(name);
kfree(slave);
return ERR_PTR(-ENOMEM);
}
/* set up the MTD object for this partition */
slave->type = master->type;
slave->flags = master->flags & ~part->mask_flags;
slave->size = part->size;
slave->writesize = master->writesize;
slave->writebufsize = master->writebufsize;
slave->oobsize = master->oobsize;
slave->oobavail = master->oobavail;
slave->subpage_sft = master->subpage_sft;
slave->name = name;
slave->owner = master->owner;
#ifndef __UBOOT__
slave->backing_dev_info = master->backing_dev_info;
/* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
* to have the same data be in two different partitions.
*/
slave->dev.parent = master->dev.parent;
#endif
if (master->_read)
slave->_read = part_read;
if (master->_write)
slave->_write = part_write;
if (master->_panic_write)
slave->_panic_write = part_panic_write;
#ifndef __UBOOT__
if (master->_point && master->_unpoint) {
slave->_point = part_point;
slave->_unpoint = part_unpoint;
}
#endif
if (master->_get_unmapped_area)
slave->_get_unmapped_area = part_get_unmapped_area;
if (master->_read_oob)
slave->_read_oob = part_read_oob;
if (master->_write_oob)
slave->_write_oob = part_write_oob;
if (master->_read_user_prot_reg)
slave->_read_user_prot_reg = part_read_user_prot_reg;
if (master->_read_fact_prot_reg)
slave->_read_fact_prot_reg = part_read_fact_prot_reg;
if (master->_write_user_prot_reg)
slave->_write_user_prot_reg = part_write_user_prot_reg;
if (master->_lock_user_prot_reg)
slave->_lock_user_prot_reg = part_lock_user_prot_reg;
if (master->_get_user_prot_info)
slave->_get_user_prot_info = part_get_user_prot_info;
if (master->_get_fact_prot_info)
slave->_get_fact_prot_info = part_get_fact_prot_info;
if (master->_sync)
slave->_sync = part_sync;
#ifndef __UBOOT__
if (!partno && !master->dev.class && master->_suspend &&
master->_resume) {
slave->_suspend = part_suspend;
slave->_resume = part_resume;
}
if (master->_writev)
slave->_writev = part_writev;
#endif
if (master->_lock)
slave->_lock = part_lock;
if (master->_unlock)
slave->_unlock = part_unlock;
if (master->_is_locked)
slave->_is_locked = part_is_locked;
if (master->_block_isreserved)
slave->_block_isreserved = part_block_isreserved;
if (master->_block_isbad)
slave->_block_isbad = part_block_isbad;
if (master->_block_markbad)
slave->_block_markbad = part_block_markbad;
slave->_erase = part_erase;
slave->parent = master;
slave->offset = part->offset;
INIT_LIST_HEAD(&slave->partitions);
INIT_LIST_HEAD(&slave->node);
if (slave->offset == MTDPART_OFS_APPEND)
slave->offset = cur_offset;
if (slave->offset == MTDPART_OFS_NXTBLK) {
slave->offset = cur_offset;
if (mtd_mod_by_eb(cur_offset, master) != 0) {
/* Round up to next erasesize */
slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
debug("Moving partition %d: "
"0x%012llx -> 0x%012llx\n", partno,
(unsigned long long)cur_offset, (unsigned long long)slave->offset);
}
}
if (slave->offset == MTDPART_OFS_RETAIN) {
slave->offset = cur_offset;
if (master->size - slave->offset >= slave->size) {
slave->size = master->size - slave->offset
- slave->size;
} else {
debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
part->name, master->size - slave->offset,
slave->size);
/* register to preserve ordering */
goto out_register;
}
}
if (slave->size == MTDPART_SIZ_FULL)
slave->size = master->size - slave->offset;
debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
(unsigned long long)(slave->offset + slave->size), slave->name);
/* let's do some sanity checks */
if (slave->offset >= master->size) {
/* let's register it anyway to preserve ordering */
slave->offset = 0;
slave->size = 0;
printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
part->name);
goto out_register;
}
if (slave->offset + slave->size > master->size) {
slave->size = master->size - slave->offset;
printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
part->name, master->name, slave->size);
}
if (master->numeraseregions > 1) {
/* Deal with variable erase size stuff */
int i, max = master->numeraseregions;
u64 end = slave->offset + slave->size;
struct mtd_erase_region_info *regions = master->eraseregions;
/* Find the first erase regions which is part of this
* partition. */
for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
;
/* The loop searched for the region _behind_ the first one */
if (i > 0)
i--;
/* Pick biggest erasesize */
for (; i < max && regions[i].offset < end; i++) {
if (slave->erasesize < regions[i].erasesize)
slave->erasesize = regions[i].erasesize;
}
WARN_ON(slave->erasesize == 0);
} else {
/* Single erase size */
slave->erasesize = master->erasesize;
}
if ((slave->flags & MTD_WRITEABLE) &&
mtd_mod_by_eb(slave->offset, slave)) {
/* Doesn't start on a boundary of major erase size */
/* FIXME: Let it be writable if it is on a boundary of
* _minor_ erase size though */
slave->flags &= ~MTD_WRITEABLE;
printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
part->name);
}
if ((slave->flags & MTD_WRITEABLE) &&
mtd_mod_by_eb(slave->size, slave)) {
slave->flags &= ~MTD_WRITEABLE;
printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
part->name);
}
slave->ecclayout = master->ecclayout;
slave->ecc_step_size = master->ecc_step_size;
slave->ecc_strength = master->ecc_strength;
slave->bitflip_threshold = master->bitflip_threshold;
if (master->_block_isbad) {
uint64_t offs = 0;
while (offs < slave->size) {
if (mtd_block_isbad(master, offs + slave->offset))
slave->ecc_stats.badblocks++;
offs += slave->erasesize;
}
}
out_register:
return slave;
}
#ifndef __UBOOT__
int mtd_add_partition(struct mtd_info *master, const char *name,
long long offset, long long length)
{
struct mtd_partition part;
struct mtd_info *p, *new;
uint64_t start, end;
int ret = 0;
/* the direct offset is expected */
if (offset == MTDPART_OFS_APPEND ||
offset == MTDPART_OFS_NXTBLK)
return -EINVAL;
if (length == MTDPART_SIZ_FULL)
length = master->size - offset;
if (length <= 0)
return -EINVAL;
part.name = name;
part.size = length;
part.offset = offset;
part.mask_flags = 0;
part.ecclayout = NULL;
new = allocate_partition(master, &part, -1, offset);
if (IS_ERR(new))
return PTR_ERR(new);
start = offset;
end = offset + length;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry(p, &master->partitions, node) {
if (start >= p->offset &&
(start < (p->offset + p->size)))
goto err_inv;
if (end >= p->offset &&
(end < (p->offset + p->size)))
goto err_inv;
}
list_add_tail(&new->node, &master->partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(new);
return ret;
err_inv:
mutex_unlock(&mtd_partitions_mutex);
free_partition(new);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(mtd_add_partition);
int mtd_del_partition(struct mtd_info *master, int partno)
{
struct mtd_info *slave, *next;
int ret = -EINVAL;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry_safe(slave, next, &master->partitions, node)
if (slave->index == partno) {
ret = del_mtd_device(slave);
if (ret < 0)
break;
list_del(&slave->node);
free_partition(slave);
break;
}
mutex_unlock(&mtd_partitions_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mtd_del_partition);
#endif
/*
* This function, given a master MTD object and a partition table, creates
* and registers slave MTD objects which are bound to the master according to
* the partition definitions.
*
* We don't register the master, or expect the caller to have done so,
* for reasons of data integrity.
*/
int add_mtd_partitions(struct mtd_info *master,
const struct mtd_partition *parts,
int nbparts)
{
struct mtd_info *slave;
uint64_t cur_offset = 0;
int i;
debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
for (i = 0; i < nbparts; i++) {
slave = allocate_partition(master, parts + i, i, cur_offset);
if (IS_ERR(slave))
return PTR_ERR(slave);
mutex_lock(&mtd_partitions_mutex);
list_add_tail(&slave->node, &master->partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(slave);
cur_offset = slave->offset + slave->size;
}
return 0;
}
#if CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL)
int add_mtd_partitions_of(struct mtd_info *master)
{
ofnode parts, child;
int i = 0;
if (!master->dev && !ofnode_valid(master->flash_node))
return 0;
if (master->dev)
parts = ofnode_find_subnode(mtd_get_ofnode(master), "partitions");
else
parts = ofnode_find_subnode(master->flash_node, "partitions");
if (!ofnode_valid(parts) || !ofnode_is_available(parts) ||
!ofnode_device_is_compatible(parts, "fixed-partitions"))
return 0;
ofnode_for_each_subnode(child, parts) {
struct mtd_partition part = { 0 };
struct mtd_info *slave;
fdt_addr_t offset, size;
if (!ofnode_is_available(child))
continue;
offset = ofnode_get_addr_size_index_notrans(child, 0, &size);
if (offset == FDT_ADDR_T_NONE || !size) {
debug("Missing partition offset/size on \"%s\" partition\n",
master->name);
continue;
}
part.name = ofnode_read_string(child, "label");
if (!part.name)
part.name = ofnode_read_string(child, "name");
/*
* .mask_flags is used to remove flags in allocate_partition(),
* so when "read-only" is present, we add MTD_WRITABLE to the
* mask, and so MTD_WRITABLE will be removed on partition
* allocation
*/
if (ofnode_read_bool(child, "read-only"))
part.mask_flags |= MTD_WRITEABLE;
if (ofnode_read_bool(child, "lock"))
part.mask_flags |= MTD_POWERUP_LOCK;
part.offset = offset;
part.size = size;
part.ecclayout = master->ecclayout;
slave = allocate_partition(master, &part, i++, 0);
if (IS_ERR(slave))
return PTR_ERR(slave);
mutex_lock(&mtd_partitions_mutex);
list_add_tail(&slave->node, &master->partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(slave);
}
return 0;
}
#endif /* CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL) */
#ifndef __UBOOT__
static DEFINE_SPINLOCK(part_parser_lock);
static LIST_HEAD(part_parsers);
static struct mtd_part_parser *get_partition_parser(const char *name)
{
struct mtd_part_parser *p, *ret = NULL;
spin_lock(&part_parser_lock);
list_for_each_entry(p, &part_parsers, list)
if (!strcmp(p->name, name) && try_module_get(p->owner)) {
ret = p;
break;
}
spin_unlock(&part_parser_lock);
return ret;
}
#define put_partition_parser(p) do { module_put((p)->owner); } while (0)
void register_mtd_parser(struct mtd_part_parser *p)
{
spin_lock(&part_parser_lock);
list_add(&p->list, &part_parsers);
spin_unlock(&part_parser_lock);
}
EXPORT_SYMBOL_GPL(register_mtd_parser);
void deregister_mtd_parser(struct mtd_part_parser *p)
{
spin_lock(&part_parser_lock);
list_del(&p->list);
spin_unlock(&part_parser_lock);
}
EXPORT_SYMBOL_GPL(deregister_mtd_parser);
/*
* Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
* are changing this array!
*/
static const char * const default_mtd_part_types[] = {
"cmdlinepart",
"ofpart",
NULL
};
/**
* parse_mtd_partitions - parse MTD partitions
* @master: the master partition (describes whole MTD device)
* @types: names of partition parsers to try or %NULL
* @pparts: array of partitions found is returned here
* @data: MTD partition parser-specific data
*
* This function tries to find partition on MTD device @master. It uses MTD
* partition parsers, specified in @types. However, if @types is %NULL, then
* the default list of parsers is used. The default list contains only the
* "cmdlinepart" and "ofpart" parsers ATM.
* Note: If there are more then one parser in @types, the kernel only takes the
* partitions parsed out by the first parser.
*
* This function may return:
* o a negative error code in case of failure
* o zero if no partitions were found
* o a positive number of found partitions, in which case on exit @pparts will
* point to an array containing this number of &struct mtd_info objects.
*/
int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_part_parser *parser;
int ret = 0;
if (!types)
types = default_mtd_part_types;
for ( ; ret <= 0 && *types; types++) {
parser = get_partition_parser(*types);
if (!parser && !request_module("%s", *types))
parser = get_partition_parser(*types);
if (!parser)
continue;
ret = (*parser->parse_fn)(master, pparts, data);
put_partition_parser(parser);
if (ret > 0) {
printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
ret, parser->name, master->name);
break;
}
}
return ret;
}
#endif
/* Returns the size of the entire flash chip */
uint64_t mtd_get_device_size(const struct mtd_info *mtd)
{
if (mtd_is_partition(mtd))
return mtd->parent->size;
return mtd->size;
}
EXPORT_SYMBOL_GPL(mtd_get_device_size);