u-boot/arch/arm/mach-imx/cpu.c

448 lines
9.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2007
* Sascha Hauer, Pengutronix
*
* (C) Copyright 2009 Freescale Semiconductor, Inc.
*/
#include <bootm.h>
#include <common.h>
#include <netdev.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/crm_regs.h>
#include <asm/mach-imx/boot_mode.h>
#include <imx_thermal.h>
#include <ipu_pixfmt.h>
#include <thermal.h>
#include <sata.h>
#ifdef CONFIG_FSL_ESDHC_IMX
#include <fsl_esdhc_imx.h>
#endif
static u32 reset_cause = -1;
u32 get_imx_reset_cause(void)
{
struct src *src_regs = (struct src *)SRC_BASE_ADDR;
if (reset_cause == -1) {
reset_cause = readl(&src_regs->srsr);
/* preserve the value for U-Boot proper */
#if !defined(CONFIG_SPL_BUILD)
writel(reset_cause, &src_regs->srsr);
#endif
}
return reset_cause;
}
#if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_SPL_BUILD)
static char *get_reset_cause(void)
{
switch (get_imx_reset_cause()) {
case 0x00001:
case 0x00011:
return "POR";
case 0x00004:
return "CSU";
case 0x00008:
return "IPP USER";
case 0x00010:
#ifdef CONFIG_MX7
return "WDOG1";
#else
return "WDOG";
#endif
case 0x00020:
return "JTAG HIGH-Z";
case 0x00040:
return "JTAG SW";
case 0x00080:
return "WDOG3";
#ifdef CONFIG_MX7
case 0x00100:
return "WDOG4";
case 0x00200:
return "TEMPSENSE";
#elif defined(CONFIG_IMX8M)
case 0x00100:
return "WDOG2";
case 0x00200:
return "TEMPSENSE";
#else
case 0x00100:
return "TEMPSENSE";
case 0x10000:
return "WARM BOOT";
#endif
default:
return "unknown reset";
}
}
#endif
#if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_SPL_BUILD)
const char *get_imx_type(u32 imxtype)
{
switch (imxtype) {
case MXC_CPU_IMX8MP:
return "8MP"; /* Quad-core version of the imx8mp */
case MXC_CPU_IMX8MN:
return "8MNano";/* Quad-core version of the imx8mn */
case MXC_CPU_IMX8MM:
return "8MMQ"; /* Quad-core version of the imx8mm */
case MXC_CPU_IMX8MML:
return "8MMQL"; /* Quad-core Lite version of the imx8mm */
case MXC_CPU_IMX8MMD:
return "8MMD"; /* Dual-core version of the imx8mm */
case MXC_CPU_IMX8MMDL:
return "8MMDL"; /* Dual-core Lite version of the imx8mm */
case MXC_CPU_IMX8MMS:
return "8MMS"; /* Single-core version of the imx8mm */
case MXC_CPU_IMX8MMSL:
return "8MMSL"; /* Single-core Lite version of the imx8mm */
case MXC_CPU_IMX8MQ:
return "8MQ"; /* Quad-core version of the imx8m */
case MXC_CPU_MX7S:
return "7S"; /* Single-core version of the mx7 */
case MXC_CPU_MX7D:
return "7D"; /* Dual-core version of the mx7 */
case MXC_CPU_MX6QP:
return "6QP"; /* Quad-Plus version of the mx6 */
case MXC_CPU_MX6DP:
return "6DP"; /* Dual-Plus version of the mx6 */
case MXC_CPU_MX6Q:
return "6Q"; /* Quad-core version of the mx6 */
case MXC_CPU_MX6D:
return "6D"; /* Dual-core version of the mx6 */
case MXC_CPU_MX6DL:
return "6DL"; /* Dual Lite version of the mx6 */
case MXC_CPU_MX6SOLO:
return "6SOLO"; /* Solo version of the mx6 */
case MXC_CPU_MX6SL:
return "6SL"; /* Solo-Lite version of the mx6 */
case MXC_CPU_MX6SLL:
return "6SLL"; /* SLL version of the mx6 */
case MXC_CPU_MX6SX:
return "6SX"; /* SoloX version of the mx6 */
case MXC_CPU_MX6UL:
return "6UL"; /* Ultra-Lite version of the mx6 */
case MXC_CPU_MX6ULL:
return "6ULL"; /* ULL version of the mx6 */
case MXC_CPU_MX6ULZ:
return "6ULZ"; /* ULZ version of the mx6 */
case MXC_CPU_MX51:
return "51";
case MXC_CPU_MX53:
return "53";
default:
return "??";
}
}
int print_cpuinfo(void)
{
u32 cpurev;
__maybe_unused u32 max_freq;
cpurev = get_cpu_rev();
#if defined(CONFIG_IMX_THERMAL)
struct udevice *thermal_dev;
int cpu_tmp, minc, maxc, ret;
printf("CPU: Freescale i.MX%s rev%d.%d",
get_imx_type((cpurev & 0x1FF000) >> 12),
(cpurev & 0x000F0) >> 4,
(cpurev & 0x0000F) >> 0);
max_freq = get_cpu_speed_grade_hz();
if (!max_freq || max_freq == mxc_get_clock(MXC_ARM_CLK)) {
printf(" at %dMHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000);
} else {
printf(" %d MHz (running at %d MHz)\n", max_freq / 1000000,
mxc_get_clock(MXC_ARM_CLK) / 1000000);
}
#else
printf("CPU: Freescale i.MX%s rev%d.%d at %d MHz\n",
get_imx_type((cpurev & 0x1FF000) >> 12),
(cpurev & 0x000F0) >> 4,
(cpurev & 0x0000F) >> 0,
mxc_get_clock(MXC_ARM_CLK) / 1000000);
#endif
#if defined(CONFIG_IMX_THERMAL)
puts("CPU: ");
switch (get_cpu_temp_grade(&minc, &maxc)) {
case TEMP_AUTOMOTIVE:
puts("Automotive temperature grade ");
break;
case TEMP_INDUSTRIAL:
puts("Industrial temperature grade ");
break;
case TEMP_EXTCOMMERCIAL:
puts("Extended Commercial temperature grade ");
break;
default:
puts("Commercial temperature grade ");
break;
}
printf("(%dC to %dC)", minc, maxc);
ret = uclass_get_device(UCLASS_THERMAL, 0, &thermal_dev);
if (!ret) {
ret = thermal_get_temp(thermal_dev, &cpu_tmp);
if (!ret)
printf(" at %dC\n", cpu_tmp);
else
debug(" - invalid sensor data\n");
} else {
debug(" - invalid sensor device\n");
}
#endif
printf("Reset cause: %s\n", get_reset_cause());
return 0;
}
#endif
int cpu_eth_init(bd_t *bis)
{
int rc = -ENODEV;
#if defined(CONFIG_FEC_MXC)
rc = fecmxc_initialize(bis);
#endif
return rc;
}
#ifdef CONFIG_FSL_ESDHC_IMX
/*
* Initializes on-chip MMC controllers.
* to override, implement board_mmc_init()
*/
int cpu_mmc_init(bd_t *bis)
{
return fsl_esdhc_mmc_init(bis);
}
#endif
#if !(defined(CONFIG_MX7) || defined(CONFIG_IMX8M))
u32 get_ahb_clk(void)
{
struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
u32 reg, ahb_podf;
reg = __raw_readl(&imx_ccm->cbcdr);
reg &= MXC_CCM_CBCDR_AHB_PODF_MASK;
ahb_podf = reg >> MXC_CCM_CBCDR_AHB_PODF_OFFSET;
return get_periph_clk() / (ahb_podf + 1);
}
#endif
void arch_preboot_os(void)
{
#if defined(CONFIG_PCIE_IMX) && !CONFIG_IS_ENABLED(DM_PCI)
imx_pcie_remove();
#endif
#if defined(CONFIG_SATA)
if (!is_mx6sdl()) {
sata_remove(0);
#if defined(CONFIG_MX6)
disable_sata_clock();
#endif
}
#endif
#if defined(CONFIG_VIDEO_IPUV3)
/* disable video before launching O/S */
ipuv3_fb_shutdown();
#endif
#if defined(CONFIG_VIDEO_MXS) && !defined(CONFIG_DM_VIDEO)
lcdif_power_down();
#endif
}
#ifndef CONFIG_IMX8M
void set_chipselect_size(int const cs_size)
{
unsigned int reg;
struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR;
reg = readl(&iomuxc_regs->gpr[1]);
switch (cs_size) {
case CS0_128:
reg &= ~0x7; /* CS0=128MB, CS1=0, CS2=0, CS3=0 */
reg |= 0x5;
break;
case CS0_64M_CS1_64M:
reg &= ~0x3F; /* CS0=64MB, CS1=64MB, CS2=0, CS3=0 */
reg |= 0x1B;
break;
case CS0_64M_CS1_32M_CS2_32M:
reg &= ~0x1FF; /* CS0=64MB, CS1=32MB, CS2=32MB, CS3=0 */
reg |= 0x4B;
break;
case CS0_32M_CS1_32M_CS2_32M_CS3_32M:
reg &= ~0xFFF; /* CS0=32MB, CS1=32MB, CS2=32MB, CS3=32MB */
reg |= 0x249;
break;
default:
printf("Unknown chip select size: %d\n", cs_size);
break;
}
writel(reg, &iomuxc_regs->gpr[1]);
}
#endif
#if defined(CONFIG_MX7) || defined(CONFIG_IMX8M)
/*
* OCOTP_TESTER3[9:8] (see Fusemap Description Table offset 0x440)
* defines a 2-bit SPEED_GRADING
*/
#define OCOTP_TESTER3_SPEED_SHIFT 8
enum cpu_speed {
OCOTP_TESTER3_SPEED_GRADE0,
OCOTP_TESTER3_SPEED_GRADE1,
OCOTP_TESTER3_SPEED_GRADE2,
OCOTP_TESTER3_SPEED_GRADE3,
};
u32 get_cpu_speed_grade_hz(void)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[1];
struct fuse_bank1_regs *fuse =
(struct fuse_bank1_regs *)bank->fuse_regs;
uint32_t val;
val = readl(&fuse->tester3);
val >>= OCOTP_TESTER3_SPEED_SHIFT;
val &= 0x3;
switch(val) {
case OCOTP_TESTER3_SPEED_GRADE0:
return 800000000;
case OCOTP_TESTER3_SPEED_GRADE1:
return is_mx7() ? 500000000 : 1000000000;
case OCOTP_TESTER3_SPEED_GRADE2:
return is_mx7() ? 1000000000 : 1300000000;
case OCOTP_TESTER3_SPEED_GRADE3:
return is_mx7() ? 1200000000 : 1500000000;
}
return 0;
}
/*
* OCOTP_TESTER3[7:6] (see Fusemap Description Table offset 0x440)
* defines a 2-bit SPEED_GRADING
*/
#define OCOTP_TESTER3_TEMP_SHIFT 6
u32 get_cpu_temp_grade(int *minc, int *maxc)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[1];
struct fuse_bank1_regs *fuse =
(struct fuse_bank1_regs *)bank->fuse_regs;
uint32_t val;
val = readl(&fuse->tester3);
val >>= OCOTP_TESTER3_TEMP_SHIFT;
val &= 0x3;
if (minc && maxc) {
if (val == TEMP_AUTOMOTIVE) {
*minc = -40;
*maxc = 125;
} else if (val == TEMP_INDUSTRIAL) {
*minc = -40;
*maxc = 105;
} else if (val == TEMP_EXTCOMMERCIAL) {
*minc = -20;
*maxc = 105;
} else {
*minc = 0;
*maxc = 95;
}
}
return val;
}
#endif
#if defined(CONFIG_MX7) || defined(CONFIG_IMX8MQ) || defined(CONFIG_IMX8MM)
enum boot_device get_boot_device(void)
{
struct bootrom_sw_info **p =
(struct bootrom_sw_info **)(ulong)ROM_SW_INFO_ADDR;
enum boot_device boot_dev = SD1_BOOT;
u8 boot_type = (*p)->boot_dev_type;
u8 boot_instance = (*p)->boot_dev_instance;
switch (boot_type) {
case BOOT_TYPE_SD:
boot_dev = boot_instance + SD1_BOOT;
break;
case BOOT_TYPE_MMC:
boot_dev = boot_instance + MMC1_BOOT;
break;
case BOOT_TYPE_NAND:
boot_dev = NAND_BOOT;
break;
case BOOT_TYPE_QSPI:
boot_dev = QSPI_BOOT;
break;
case BOOT_TYPE_WEIM:
boot_dev = WEIM_NOR_BOOT;
break;
case BOOT_TYPE_SPINOR:
boot_dev = SPI_NOR_BOOT;
break;
#ifdef CONFIG_IMX8M
case BOOT_TYPE_USB:
boot_dev = USB_BOOT;
break;
#endif
default:
break;
}
return boot_dev;
}
#endif
#ifdef CONFIG_NXP_BOARD_REVISION
int nxp_board_rev(void)
{
/*
* Get Board ID information from OCOTP_GP1[15:8]
* RevA: 0x1
* RevB: 0x2
* RevC: 0x3
*/
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[4];
struct fuse_bank4_regs *fuse =
(struct fuse_bank4_regs *)bank->fuse_regs;
return (readl(&fuse->gp1) >> 8 & 0x0F);
}
char nxp_board_rev_string(void)
{
const char *rev = "A";
return (*rev + nxp_board_rev() - 1);
}
#endif