u-boot/arch/arm/mach-tegra/tegra124/cpu.c

347 lines
9.7 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013
* NVIDIA Corporation <www.nvidia.com>
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/ahb.h>
#include <asm/arch/clock.h>
#include <asm/arch/flow.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/ap.h>
#include "../cpu.h"
/* Tegra124-specific CPU init code */
static void enable_cpu_power_rail(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
debug("%s entry\n", __func__);
/* un-tristate PWR_I2C SCL/SDA, rest of the defaults are correct */
pinmux_tristate_disable(PMUX_PINGRP_PWR_I2C_SCL_PZ6);
pinmux_tristate_disable(PMUX_PINGRP_PWR_I2C_SDA_PZ7);
pmic_enable_cpu_vdd();
/*
* Set CPUPWRGOOD_TIMER - APB clock is 1/2 of SCLK (102MHz),
* set it for 5ms as per SysEng (102MHz*5ms = 510000 (7C830h).
*/
writel(0x7C830, &pmc->pmc_cpupwrgood_timer);
/* Set polarity to 0 (normal) and enable CPUPWRREQ_OE */
clrbits_le32(&pmc->pmc_cntrl, CPUPWRREQ_POL);
setbits_le32(&pmc->pmc_cntrl, CPUPWRREQ_OE);
}
static void enable_cpu_clocks(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_XCPU];
u32 reg;
debug("%s entry\n", __func__);
/* Wait for PLL-X to lock */
do {
reg = readl(&clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
debug("%s: PLLX base = 0x%08X\n", __func__, reg);
} while ((reg & (1 << pllinfo->lock_det)) == 0);
debug("%s: PLLX locked, delay for stable clocks\n", __func__);
/* Wait until all clocks are stable */
udelay(PLL_STABILIZATION_DELAY);
debug("%s: Setting CCLK_BURST and DIVIDER\n", __func__);
writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
debug("%s: Enabling clock to all CPUs\n", __func__);
/* Enable the clock to all CPUs */
reg = CLR_CPU3_CLK_STP | CLR_CPU2_CLK_STP | CLR_CPU1_CLK_STP |
CLR_CPU0_CLK_STP;
writel(reg, &clkrst->crc_clk_cpu_cmplx_clr);
debug("%s: Enabling main CPU complex clocks\n", __func__);
/* Always enable the main CPU complex clocks */
clock_enable(PERIPH_ID_CPU);
clock_enable(PERIPH_ID_CPULP);
clock_enable(PERIPH_ID_CPUG);
debug("%s: Done\n", __func__);
}
static void remove_cpu_resets(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
debug("%s entry\n", __func__);
/* Take the slow and fast partitions out of reset */
reg = CLR_NONCPURESET;
writel(reg, &clkrst->crc_rst_cpulp_cmplx_clr);
writel(reg, &clkrst->crc_rst_cpug_cmplx_clr);
/* Clear the SW-controlled reset of the slow cluster */
reg = CLR_CPURESET0 | CLR_DBGRESET0 | CLR_CORERESET0 | CLR_CXRESET0 |
CLR_L2RESET | CLR_PRESETDBG;
writel(reg, &clkrst->crc_rst_cpulp_cmplx_clr);
/* Clear the SW-controlled reset of the fast cluster */
reg = CLR_CPURESET0 | CLR_DBGRESET0 | CLR_CORERESET0 | CLR_CXRESET0 |
CLR_CPURESET1 | CLR_DBGRESET1 | CLR_CORERESET1 | CLR_CXRESET1 |
CLR_CPURESET2 | CLR_DBGRESET2 | CLR_CORERESET2 | CLR_CXRESET2 |
CLR_CPURESET3 | CLR_DBGRESET3 | CLR_CORERESET3 | CLR_CXRESET3 |
CLR_L2RESET | CLR_PRESETDBG;
writel(reg, &clkrst->crc_rst_cpug_cmplx_clr);
}
static void tegra124_ram_repair(void)
{
struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
u32 ram_repair_timeout; /*usec*/
u32 val;
/*
* Request the Flow Controller perform RAM repair whenever it turns on
* a power rail that requires RAM repair.
*/
clrbits_le32(&flow->ram_repair, RAM_REPAIR_BYPASS_EN);
/* Request SW trigerred RAM repair by setting req bit */
/* cluster 0 */
setbits_le32(&flow->ram_repair, RAM_REPAIR_REQ);
/* Wait for completion (status == 0) */
ram_repair_timeout = 500;
do {
udelay(1);
val = readl(&flow->ram_repair);
} while (!(val & RAM_REPAIR_STS) && ram_repair_timeout--);
if (!ram_repair_timeout)
debug("Ram Repair cluster0 failed\n");
/* cluster 1 */
setbits_le32(&flow->ram_repair_cluster1, RAM_REPAIR_REQ);
/* Wait for completion (status == 0) */
ram_repair_timeout = 500;
do {
udelay(1);
val = readl(&flow->ram_repair_cluster1);
} while (!(val & RAM_REPAIR_STS) && ram_repair_timeout--);
if (!ram_repair_timeout)
debug("Ram Repair cluster1 failed\n");
}
/**
* Tegra124 requires some special clock initialization, including setting up
* the DVC I2C, turning on MSELECT and selecting the G CPU cluster
*/
void tegra124_init_clocks(void)
{
struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 val;
debug("%s entry\n", __func__);
/* Set active CPU cluster to G */
clrbits_le32(&flow->cluster_control, 1);
/* Change the oscillator drive strength */
val = readl(&clkrst->crc_osc_ctrl);
val &= ~OSC_XOFS_MASK;
val |= (OSC_DRIVE_STRENGTH << OSC_XOFS_SHIFT);
writel(val, &clkrst->crc_osc_ctrl);
/* Update same value in PMC_OSC_EDPD_OVER XOFS field for warmboot */
val = readl(&pmc->pmc_osc_edpd_over);
val &= ~PMC_XOFS_MASK;
val |= (OSC_DRIVE_STRENGTH << PMC_XOFS_SHIFT);
writel(val, &pmc->pmc_osc_edpd_over);
/* Set HOLD_CKE_LOW_EN to 1 */
setbits_le32(&pmc->pmc_cntrl2, HOLD_CKE_LOW_EN);
debug("Setting up PLLX\n");
init_pllx();
val = (1 << CLK_SYS_RATE_AHB_RATE_SHIFT);
writel(val, &clkrst->crc_clk_sys_rate);
/* Enable clocks to required peripherals. TBD - minimize this list */
debug("Enabling clocks\n");
clock_set_enable(PERIPH_ID_CACHE2, 1);
clock_set_enable(PERIPH_ID_GPIO, 1);
clock_set_enable(PERIPH_ID_TMR, 1);
clock_set_enable(PERIPH_ID_CPU, 1);
clock_set_enable(PERIPH_ID_EMC, 1);
clock_set_enable(PERIPH_ID_I2C5, 1);
clock_set_enable(PERIPH_ID_APBDMA, 1);
clock_set_enable(PERIPH_ID_MEM, 1);
clock_set_enable(PERIPH_ID_CORESIGHT, 1);
clock_set_enable(PERIPH_ID_MSELECT, 1);
clock_set_enable(PERIPH_ID_DVFS, 1);
/*
* Set MSELECT clock source as PLLP (00), and ask for a clock
* divider that would set the MSELECT clock at 102MHz for a
* PLLP base of 408MHz.
*/
clock_ll_set_source_divisor(PERIPH_ID_MSELECT, 0,
CLK_DIVIDER(NVBL_PLLP_KHZ, 102000));
/* Give clock time to stabilize */
udelay(IO_STABILIZATION_DELAY);
/* I2C5 (DVC) gets CLK_M and a divisor of 17 */
clock_ll_set_source_divisor(PERIPH_ID_I2C5, 3, 16);
/* Give clock time to stabilize */
udelay(IO_STABILIZATION_DELAY);
/* Take required peripherals out of reset */
debug("Taking periphs out of reset\n");
reset_set_enable(PERIPH_ID_CACHE2, 0);
reset_set_enable(PERIPH_ID_GPIO, 0);
reset_set_enable(PERIPH_ID_TMR, 0);
reset_set_enable(PERIPH_ID_COP, 0);
reset_set_enable(PERIPH_ID_EMC, 0);
reset_set_enable(PERIPH_ID_I2C5, 0);
reset_set_enable(PERIPH_ID_APBDMA, 0);
reset_set_enable(PERIPH_ID_MEM, 0);
reset_set_enable(PERIPH_ID_CORESIGHT, 0);
reset_set_enable(PERIPH_ID_MSELECT, 0);
reset_set_enable(PERIPH_ID_DVFS, 0);
debug("%s exit\n", __func__);
}
static bool is_partition_powered(u32 partid)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
/* Get power gate status */
reg = readl(&pmc->pmc_pwrgate_status);
return !!(reg & (1 << partid));
}
static void unpower_partition(u32 partid)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
debug("%s: part ID = %08X\n", __func__, partid);
/* Is the partition on? */
if (is_partition_powered(partid)) {
/* Yes, toggle the partition power state (ON -> OFF) */
debug("power_partition, toggling state\n");
writel(START_CP | partid, &pmc->pmc_pwrgate_toggle);
/* Wait for the power to come down */
while (is_partition_powered(partid))
;
/* Give I/O signals time to stabilize */
udelay(IO_STABILIZATION_DELAY);
}
}
void unpower_cpus(void)
{
debug("%s entry: G cluster\n", __func__);
/* Power down the fast cluster rail partition */
debug("%s: CRAIL\n", __func__);
unpower_partition(CRAIL);
/* Power down the fast cluster non-CPU partition */
debug("%s: C0NC\n", __func__);
unpower_partition(C0NC);
/* Power down the fast cluster CPU0 partition */
debug("%s: CE0\n", __func__);
unpower_partition(CE0);
debug("%s: done\n", __func__);
}
static void power_partition(u32 partid)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
debug("%s: part ID = %08X\n", __func__, partid);
/* Is the partition already on? */
if (!is_partition_powered(partid)) {
/* No, toggle the partition power state (OFF -> ON) */
debug("power_partition, toggling state\n");
writel(START_CP | partid, &pmc->pmc_pwrgate_toggle);
/* Wait for the power to come up */
while (!is_partition_powered(partid))
;
/* Give I/O signals time to stabilize */
udelay(IO_STABILIZATION_DELAY);
}
}
void powerup_cpus(void)
{
/* We boot to the fast cluster */
debug("%s entry: G cluster\n", __func__);
/* Power up the fast cluster rail partition */
debug("%s: CRAIL\n", __func__);
power_partition(CRAIL);
/* Power up the fast cluster non-CPU partition */
debug("%s: C0NC\n", __func__);
power_partition(C0NC);
/* Power up the fast cluster CPU0 partition */
debug("%s: CE0\n", __func__);
power_partition(CE0);
debug("%s: done\n", __func__);
}
void start_cpu(u32 reset_vector)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
debug("%s entry, reset_vector = %x\n", __func__, reset_vector);
/*
* High power clusters are on after software reset,
* it may interfere with tegra124_ram_repair.
* unpower them.
*/
unpower_cpus();
tegra124_init_clocks();
/* Set power-gating timer multiplier */
writel((MULT_8 << TIMER_MULT_SHIFT) | (MULT_8 << TIMER_MULT_CPU_SHIFT),
&pmc->pmc_pwrgate_timer_mult);
enable_cpu_power_rail();
powerup_cpus();
tegra124_ram_repair();
enable_cpu_clocks();
clock_enable_coresight(1);
writel(reset_vector, EXCEP_VECTOR_CPU_RESET_VECTOR);
remove_cpu_resets();
debug("%s exit, should continue @ reset_vector\n", __func__);
}