mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-25 03:15:17 +00:00
502 lines
13 KiB
C
502 lines
13 KiB
C
|
// SPDX-License-Identifier: GPL-2.0+
|
||
|
/*
|
||
|
* Copyright (C) 2018 Exceet Electronics GmbH
|
||
|
* Copyright (C) 2018 Bootlin
|
||
|
*
|
||
|
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
|
||
|
*/
|
||
|
|
||
|
#ifndef __UBOOT__
|
||
|
#include <linux/dmaengine.h>
|
||
|
#include <linux/pm_runtime.h>
|
||
|
#include "internals.h"
|
||
|
#else
|
||
|
#include <spi.h>
|
||
|
#include <spi-mem.h>
|
||
|
#endif
|
||
|
|
||
|
#ifndef __UBOOT__
|
||
|
/**
|
||
|
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
|
||
|
* memory operation
|
||
|
* @ctlr: the SPI controller requesting this dma_map()
|
||
|
* @op: the memory operation containing the buffer to map
|
||
|
* @sgt: a pointer to a non-initialized sg_table that will be filled by this
|
||
|
* function
|
||
|
*
|
||
|
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
||
|
* This helper prepares everything for you and provides a ready-to-use
|
||
|
* sg_table. This function is not intended to be called from spi drivers.
|
||
|
* Only SPI controller drivers should use it.
|
||
|
* Note that the caller must ensure the memory region pointed by
|
||
|
* op->data.buf.{in,out} is DMA-able before calling this function.
|
||
|
*
|
||
|
* Return: 0 in case of success, a negative error code otherwise.
|
||
|
*/
|
||
|
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
|
||
|
const struct spi_mem_op *op,
|
||
|
struct sg_table *sgt)
|
||
|
{
|
||
|
struct device *dmadev;
|
||
|
|
||
|
if (!op->data.nbytes)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
||
|
dmadev = ctlr->dma_tx->device->dev;
|
||
|
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
||
|
dmadev = ctlr->dma_rx->device->dev;
|
||
|
else
|
||
|
dmadev = ctlr->dev.parent;
|
||
|
|
||
|
if (!dmadev)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
|
||
|
op->data.dir == SPI_MEM_DATA_IN ?
|
||
|
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
|
||
|
|
||
|
/**
|
||
|
* spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
|
||
|
* memory operation
|
||
|
* @ctlr: the SPI controller requesting this dma_unmap()
|
||
|
* @op: the memory operation containing the buffer to unmap
|
||
|
* @sgt: a pointer to an sg_table previously initialized by
|
||
|
* spi_controller_dma_map_mem_op_data()
|
||
|
*
|
||
|
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
||
|
* This helper prepares things so that the CPU can access the
|
||
|
* op->data.buf.{in,out} buffer again.
|
||
|
*
|
||
|
* This function is not intended to be called from SPI drivers. Only SPI
|
||
|
* controller drivers should use it.
|
||
|
*
|
||
|
* This function should be called after the DMA operation has finished and is
|
||
|
* only valid if the previous spi_controller_dma_map_mem_op_data() call
|
||
|
* returned 0.
|
||
|
*
|
||
|
* Return: 0 in case of success, a negative error code otherwise.
|
||
|
*/
|
||
|
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
|
||
|
const struct spi_mem_op *op,
|
||
|
struct sg_table *sgt)
|
||
|
{
|
||
|
struct device *dmadev;
|
||
|
|
||
|
if (!op->data.nbytes)
|
||
|
return;
|
||
|
|
||
|
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
||
|
dmadev = ctlr->dma_tx->device->dev;
|
||
|
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
||
|
dmadev = ctlr->dma_rx->device->dev;
|
||
|
else
|
||
|
dmadev = ctlr->dev.parent;
|
||
|
|
||
|
spi_unmap_buf(ctlr, dmadev, sgt,
|
||
|
op->data.dir == SPI_MEM_DATA_IN ?
|
||
|
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
|
||
|
#endif /* __UBOOT__ */
|
||
|
|
||
|
static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
|
||
|
{
|
||
|
u32 mode = slave->mode;
|
||
|
|
||
|
switch (buswidth) {
|
||
|
case 1:
|
||
|
return 0;
|
||
|
|
||
|
case 2:
|
||
|
if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
|
||
|
(!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
|
||
|
return 0;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 4:
|
||
|
if ((tx && (mode & SPI_TX_QUAD)) ||
|
||
|
(!tx && (mode & SPI_RX_QUAD)))
|
||
|
return 0;
|
||
|
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return -ENOTSUPP;
|
||
|
}
|
||
|
|
||
|
bool spi_mem_default_supports_op(struct spi_slave *slave,
|
||
|
const struct spi_mem_op *op)
|
||
|
{
|
||
|
if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
|
||
|
return false;
|
||
|
|
||
|
if (op->addr.nbytes &&
|
||
|
spi_check_buswidth_req(slave, op->addr.buswidth, true))
|
||
|
return false;
|
||
|
|
||
|
if (op->dummy.nbytes &&
|
||
|
spi_check_buswidth_req(slave, op->dummy.buswidth, true))
|
||
|
return false;
|
||
|
|
||
|
if (op->data.nbytes &&
|
||
|
spi_check_buswidth_req(slave, op->data.buswidth,
|
||
|
op->data.dir == SPI_MEM_DATA_OUT))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
|
||
|
|
||
|
/**
|
||
|
* spi_mem_supports_op() - Check if a memory device and the controller it is
|
||
|
* connected to support a specific memory operation
|
||
|
* @slave: the SPI device
|
||
|
* @op: the memory operation to check
|
||
|
*
|
||
|
* Some controllers are only supporting Single or Dual IOs, others might only
|
||
|
* support specific opcodes, or it can even be that the controller and device
|
||
|
* both support Quad IOs but the hardware prevents you from using it because
|
||
|
* only 2 IO lines are connected.
|
||
|
*
|
||
|
* This function checks whether a specific operation is supported.
|
||
|
*
|
||
|
* Return: true if @op is supported, false otherwise.
|
||
|
*/
|
||
|
bool spi_mem_supports_op(struct spi_slave *slave,
|
||
|
const struct spi_mem_op *op)
|
||
|
{
|
||
|
struct udevice *bus = slave->dev->parent;
|
||
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
||
|
|
||
|
if (ops->mem_ops && ops->mem_ops->supports_op)
|
||
|
return ops->mem_ops->supports_op(slave, op);
|
||
|
|
||
|
return spi_mem_default_supports_op(slave, op);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(spi_mem_supports_op);
|
||
|
|
||
|
/**
|
||
|
* spi_mem_exec_op() - Execute a memory operation
|
||
|
* @slave: the SPI device
|
||
|
* @op: the memory operation to execute
|
||
|
*
|
||
|
* Executes a memory operation.
|
||
|
*
|
||
|
* This function first checks that @op is supported and then tries to execute
|
||
|
* it.
|
||
|
*
|
||
|
* Return: 0 in case of success, a negative error code otherwise.
|
||
|
*/
|
||
|
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
|
||
|
{
|
||
|
struct udevice *bus = slave->dev->parent;
|
||
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
||
|
unsigned int pos = 0;
|
||
|
const u8 *tx_buf = NULL;
|
||
|
u8 *rx_buf = NULL;
|
||
|
u8 *op_buf;
|
||
|
int op_len;
|
||
|
u32 flag;
|
||
|
int ret;
|
||
|
int i;
|
||
|
|
||
|
if (!spi_mem_supports_op(slave, op))
|
||
|
return -ENOTSUPP;
|
||
|
|
||
|
if (ops->mem_ops) {
|
||
|
#ifndef __UBOOT__
|
||
|
/*
|
||
|
* Flush the message queue before executing our SPI memory
|
||
|
* operation to prevent preemption of regular SPI transfers.
|
||
|
*/
|
||
|
spi_flush_queue(ctlr);
|
||
|
|
||
|
if (ctlr->auto_runtime_pm) {
|
||
|
ret = pm_runtime_get_sync(ctlr->dev.parent);
|
||
|
if (ret < 0) {
|
||
|
dev_err(&ctlr->dev,
|
||
|
"Failed to power device: %d\n",
|
||
|
ret);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mutex_lock(&ctlr->bus_lock_mutex);
|
||
|
mutex_lock(&ctlr->io_mutex);
|
||
|
#endif
|
||
|
ret = ops->mem_ops->exec_op(slave, op);
|
||
|
#ifndef __UBOOT__
|
||
|
mutex_unlock(&ctlr->io_mutex);
|
||
|
mutex_unlock(&ctlr->bus_lock_mutex);
|
||
|
|
||
|
if (ctlr->auto_runtime_pm)
|
||
|
pm_runtime_put(ctlr->dev.parent);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Some controllers only optimize specific paths (typically the
|
||
|
* read path) and expect the core to use the regular SPI
|
||
|
* interface in other cases.
|
||
|
*/
|
||
|
if (!ret || ret != -ENOTSUPP)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
#ifndef __UBOOT__
|
||
|
tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
|
||
|
op->dummy.nbytes;
|
||
|
|
||
|
/*
|
||
|
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
|
||
|
* we're guaranteed that this buffer is DMA-able, as required by the
|
||
|
* SPI layer.
|
||
|
*/
|
||
|
tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
|
||
|
if (!tmpbuf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
spi_message_init(&msg);
|
||
|
|
||
|
tmpbuf[0] = op->cmd.opcode;
|
||
|
xfers[xferpos].tx_buf = tmpbuf;
|
||
|
xfers[xferpos].len = sizeof(op->cmd.opcode);
|
||
|
xfers[xferpos].tx_nbits = op->cmd.buswidth;
|
||
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
||
|
xferpos++;
|
||
|
totalxferlen++;
|
||
|
|
||
|
if (op->addr.nbytes) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < op->addr.nbytes; i++)
|
||
|
tmpbuf[i + 1] = op->addr.val >>
|
||
|
(8 * (op->addr.nbytes - i - 1));
|
||
|
|
||
|
xfers[xferpos].tx_buf = tmpbuf + 1;
|
||
|
xfers[xferpos].len = op->addr.nbytes;
|
||
|
xfers[xferpos].tx_nbits = op->addr.buswidth;
|
||
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
||
|
xferpos++;
|
||
|
totalxferlen += op->addr.nbytes;
|
||
|
}
|
||
|
|
||
|
if (op->dummy.nbytes) {
|
||
|
memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
|
||
|
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
|
||
|
xfers[xferpos].len = op->dummy.nbytes;
|
||
|
xfers[xferpos].tx_nbits = op->dummy.buswidth;
|
||
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
||
|
xferpos++;
|
||
|
totalxferlen += op->dummy.nbytes;
|
||
|
}
|
||
|
|
||
|
if (op->data.nbytes) {
|
||
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
||
|
xfers[xferpos].rx_buf = op->data.buf.in;
|
||
|
xfers[xferpos].rx_nbits = op->data.buswidth;
|
||
|
} else {
|
||
|
xfers[xferpos].tx_buf = op->data.buf.out;
|
||
|
xfers[xferpos].tx_nbits = op->data.buswidth;
|
||
|
}
|
||
|
|
||
|
xfers[xferpos].len = op->data.nbytes;
|
||
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
||
|
xferpos++;
|
||
|
totalxferlen += op->data.nbytes;
|
||
|
}
|
||
|
|
||
|
ret = spi_sync(slave, &msg);
|
||
|
|
||
|
kfree(tmpbuf);
|
||
|
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (msg.actual_length != totalxferlen)
|
||
|
return -EIO;
|
||
|
#else
|
||
|
|
||
|
/* U-Boot does not support parallel SPI data lanes */
|
||
|
if ((op->cmd.buswidth != 1) ||
|
||
|
(op->addr.nbytes && op->addr.buswidth != 1) ||
|
||
|
(op->dummy.nbytes && op->dummy.buswidth != 1) ||
|
||
|
(op->data.nbytes && op->data.buswidth != 1)) {
|
||
|
printf("Dual/Quad raw SPI transfers not supported\n");
|
||
|
return -ENOTSUPP;
|
||
|
}
|
||
|
|
||
|
if (op->data.nbytes) {
|
||
|
if (op->data.dir == SPI_MEM_DATA_IN)
|
||
|
rx_buf = op->data.buf.in;
|
||
|
else
|
||
|
tx_buf = op->data.buf.out;
|
||
|
}
|
||
|
|
||
|
op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
|
||
|
op_buf = calloc(1, op_len);
|
||
|
|
||
|
ret = spi_claim_bus(slave);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
op_buf[pos++] = op->cmd.opcode;
|
||
|
|
||
|
if (op->addr.nbytes) {
|
||
|
for (i = 0; i < op->addr.nbytes; i++)
|
||
|
op_buf[pos + i] = op->addr.val >>
|
||
|
(8 * (op->addr.nbytes - i - 1));
|
||
|
|
||
|
pos += op->addr.nbytes;
|
||
|
}
|
||
|
|
||
|
if (op->dummy.nbytes)
|
||
|
memset(op_buf + pos, 0xff, op->dummy.nbytes);
|
||
|
|
||
|
/* 1st transfer: opcode + address + dummy cycles */
|
||
|
flag = SPI_XFER_BEGIN;
|
||
|
/* Make sure to set END bit if no tx or rx data messages follow */
|
||
|
if (!tx_buf && !rx_buf)
|
||
|
flag |= SPI_XFER_END;
|
||
|
|
||
|
ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* 2nd transfer: rx or tx data path */
|
||
|
if (tx_buf || rx_buf) {
|
||
|
ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
|
||
|
rx_buf, SPI_XFER_END);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
spi_release_bus(slave);
|
||
|
|
||
|
for (i = 0; i < pos; i++)
|
||
|
debug("%02x ", op_buf[i]);
|
||
|
debug("| [%dB %s] ",
|
||
|
tx_buf || rx_buf ? op->data.nbytes : 0,
|
||
|
tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
|
||
|
for (i = 0; i < op->data.nbytes; i++)
|
||
|
debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
|
||
|
debug("[ret %d]\n", ret);
|
||
|
|
||
|
free(op_buf);
|
||
|
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
#endif /* __UBOOT__ */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(spi_mem_exec_op);
|
||
|
|
||
|
/**
|
||
|
* spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
|
||
|
* match controller limitations
|
||
|
* @slave: the SPI device
|
||
|
* @op: the operation to adjust
|
||
|
*
|
||
|
* Some controllers have FIFO limitations and must split a data transfer
|
||
|
* operation into multiple ones, others require a specific alignment for
|
||
|
* optimized accesses. This function allows SPI mem drivers to split a single
|
||
|
* operation into multiple sub-operations when required.
|
||
|
*
|
||
|
* Return: a negative error code if the controller can't properly adjust @op,
|
||
|
* 0 otherwise. Note that @op->data.nbytes will be updated if @op
|
||
|
* can't be handled in a single step.
|
||
|
*/
|
||
|
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
|
||
|
{
|
||
|
struct udevice *bus = slave->dev->parent;
|
||
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
||
|
|
||
|
if (ops->mem_ops && ops->mem_ops->adjust_op_size)
|
||
|
return ops->mem_ops->adjust_op_size(slave, op);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
|
||
|
|
||
|
#ifndef __UBOOT__
|
||
|
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
|
||
|
{
|
||
|
return container_of(drv, struct spi_mem_driver, spidrv.driver);
|
||
|
}
|
||
|
|
||
|
static int spi_mem_probe(struct spi_device *spi)
|
||
|
{
|
||
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||
|
struct spi_mem *mem;
|
||
|
|
||
|
mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
|
||
|
if (!mem)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
mem->spi = spi;
|
||
|
spi_set_drvdata(spi, mem);
|
||
|
|
||
|
return memdrv->probe(mem);
|
||
|
}
|
||
|
|
||
|
static int spi_mem_remove(struct spi_device *spi)
|
||
|
{
|
||
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||
|
struct spi_mem *mem = spi_get_drvdata(spi);
|
||
|
|
||
|
if (memdrv->remove)
|
||
|
return memdrv->remove(mem);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void spi_mem_shutdown(struct spi_device *spi)
|
||
|
{
|
||
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||
|
struct spi_mem *mem = spi_get_drvdata(spi);
|
||
|
|
||
|
if (memdrv->shutdown)
|
||
|
memdrv->shutdown(mem);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* spi_mem_driver_register_with_owner() - Register a SPI memory driver
|
||
|
* @memdrv: the SPI memory driver to register
|
||
|
* @owner: the owner of this driver
|
||
|
*
|
||
|
* Registers a SPI memory driver.
|
||
|
*
|
||
|
* Return: 0 in case of success, a negative error core otherwise.
|
||
|
*/
|
||
|
|
||
|
int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
|
||
|
struct module *owner)
|
||
|
{
|
||
|
memdrv->spidrv.probe = spi_mem_probe;
|
||
|
memdrv->spidrv.remove = spi_mem_remove;
|
||
|
memdrv->spidrv.shutdown = spi_mem_shutdown;
|
||
|
|
||
|
return __spi_register_driver(owner, &memdrv->spidrv);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
|
||
|
|
||
|
/**
|
||
|
* spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
|
||
|
* @memdrv: the SPI memory driver to unregister
|
||
|
*
|
||
|
* Unregisters a SPI memory driver.
|
||
|
*/
|
||
|
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
|
||
|
{
|
||
|
spi_unregister_driver(&memdrv->spidrv);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
|
||
|
#endif /* __UBOOT__ */
|