u-boot/drivers/ddr/altera/sdram_s10.c

616 lines
17 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2018 Intel Corporation <www.intel.com>
*
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <div64.h>
#include <fdtdec.h>
#include <ram.h>
#include <reset.h>
#include "sdram_s10.h"
#include <wait_bit.h>
#include <asm/arch/firewall_s10.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/io.h>
#include <linux/sizes.h>
struct altera_sdram_priv {
struct ram_info info;
struct reset_ctl_bulk resets;
};
struct altera_sdram_platdata {
void __iomem *hmc;
void __iomem *ddr_sch;
void __iomem *iomhc;
};
DECLARE_GLOBAL_DATA_PTR;
static const struct socfpga_system_manager *sysmgr_regs =
(void *)SOCFPGA_SYSMGR_ADDRESS;
#define DDR_CONFIG(A, B, C, R) (((A) << 24) | ((B) << 16) | ((C) << 8) | (R))
#define PGTABLE_OFF 0x4000
/* The followring are the supported configurations */
u32 ddr_config[] = {
/* DDR_CONFIG(Address order,Bank,Column,Row) */
/* List for DDR3 or LPDDR3 (pinout order > chip, row, bank, column) */
DDR_CONFIG(0, 3, 10, 12),
DDR_CONFIG(0, 3, 9, 13),
DDR_CONFIG(0, 3, 10, 13),
DDR_CONFIG(0, 3, 9, 14),
DDR_CONFIG(0, 3, 10, 14),
DDR_CONFIG(0, 3, 10, 15),
DDR_CONFIG(0, 3, 11, 14),
DDR_CONFIG(0, 3, 11, 15),
DDR_CONFIG(0, 3, 10, 16),
DDR_CONFIG(0, 3, 11, 16),
DDR_CONFIG(0, 3, 12, 15), /* 0xa */
/* List for DDR4 only (pinout order > chip, bank, row, column) */
DDR_CONFIG(1, 3, 10, 14),
DDR_CONFIG(1, 4, 10, 14),
DDR_CONFIG(1, 3, 10, 15),
DDR_CONFIG(1, 4, 10, 15),
DDR_CONFIG(1, 3, 10, 16),
DDR_CONFIG(1, 4, 10, 16),
DDR_CONFIG(1, 3, 10, 17),
DDR_CONFIG(1, 4, 10, 17),
};
static u32 hmc_readl(struct altera_sdram_platdata *plat, u32 reg)
{
return readl(plat->iomhc + reg);
}
static u32 hmc_ecc_readl(struct altera_sdram_platdata *plat, u32 reg)
{
return readl(plat->hmc + reg);
}
static u32 hmc_ecc_writel(struct altera_sdram_platdata *plat,
u32 data, u32 reg)
{
return writel(data, plat->hmc + reg);
}
static u32 ddr_sch_writel(struct altera_sdram_platdata *plat, u32 data,
u32 reg)
{
return writel(data, plat->ddr_sch + reg);
}
int match_ddr_conf(u32 ddr_conf)
{
int i;
for (i = 0; i < ARRAY_SIZE(ddr_config); i++) {
if (ddr_conf == ddr_config[i])
return i;
}
return 0;
}
static int emif_clear(struct altera_sdram_platdata *plat)
{
hmc_ecc_writel(plat, 0, RSTHANDSHAKECTRL);
return wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_RSTHANDSHAKE_MASK,
false, 1000, false);
}
static int emif_reset(struct altera_sdram_platdata *plat)
{
u32 c2s, s2c, ret;
c2s = hmc_ecc_readl(plat, RSTHANDSHAKECTRL) & DDR_HMC_RSTHANDSHAKE_MASK;
s2c = hmc_ecc_readl(plat, RSTHANDSHAKESTAT) & DDR_HMC_RSTHANDSHAKE_MASK;
debug("DDR: c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n",
c2s, s2c, hmc_readl(plat, NIOSRESERVED0),
hmc_readl(plat, NIOSRESERVED1), hmc_readl(plat, NIOSRESERVED2),
hmc_readl(plat, DRAMSTS));
if (s2c && emif_clear(plat)) {
printf("DDR: emif_clear() failed\n");
return -1;
}
debug("DDR: Triggerring emif reset\n");
hmc_ecc_writel(plat, DDR_HMC_CORE2SEQ_INT_REQ, RSTHANDSHAKECTRL);
/* if seq2core[3] = 0, we are good */
ret = wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_SEQ2CORE_INT_RESP_MASK,
false, 1000, false);
if (ret) {
printf("DDR: failed to get ack from EMIF\n");
return ret;
}
ret = emif_clear(plat);
if (ret) {
printf("DDR: emif_clear() failed\n");
return ret;
}
debug("DDR: %s triggered successly\n", __func__);
return 0;
}
static int poll_hmc_clock_status(void)
{
return wait_for_bit_le32(&sysmgr_regs->hmc_clk,
SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false);
}
static void sdram_clear_mem(phys_addr_t addr, phys_size_t size)
{
phys_size_t i;
if (addr % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: address 0x%llx is not cacheline size aligned.\n",
addr);
hang();
}
if (size % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: size 0x%llx is not multiple of cacheline size\n",
size);
hang();
}
/* Use DC ZVA instruction to clear memory to zeros by a cache line */
for (i = 0; i < size; i = i + CONFIG_SYS_CACHELINE_SIZE) {
asm volatile("dc zva, %0"
:
: "r"(addr)
: "memory");
addr += CONFIG_SYS_CACHELINE_SIZE;
}
}
static void sdram_init_ecc_bits(bd_t *bd)
{
phys_size_t size, size_init;
phys_addr_t start_addr;
int bank = 0;
unsigned int start = get_timer(0);
icache_enable();
start_addr = bd->bi_dram[0].start;
size = bd->bi_dram[0].size;
/* Initialize small block for page table */
memset((void *)start_addr, 0, PGTABLE_SIZE + PGTABLE_OFF);
gd->arch.tlb_addr = start_addr + PGTABLE_OFF;
gd->arch.tlb_size = PGTABLE_SIZE;
start_addr += PGTABLE_SIZE + PGTABLE_OFF;
size -= (PGTABLE_OFF + PGTABLE_SIZE);
dcache_enable();
while (1) {
while (size) {
size_init = min((phys_addr_t)SZ_1G, (phys_addr_t)size);
sdram_clear_mem(start_addr, size_init);
size -= size_init;
start_addr += size_init;
WATCHDOG_RESET();
}
bank++;
if (bank >= CONFIG_NR_DRAM_BANKS)
break;
start_addr = bd->bi_dram[bank].start;
size = bd->bi_dram[bank].size;
}
dcache_disable();
icache_disable();
printf("SDRAM-ECC: Initialized success with %d ms\n",
(unsigned int)get_timer(start));
}
static void sdram_size_check(bd_t *bd)
{
phys_size_t total_ram_check = 0;
phys_size_t ram_check = 0;
phys_addr_t start = 0;
int bank;
/* Sanity check ensure correct SDRAM size specified */
debug("DDR: Running SDRAM size sanity check\n");
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
start = bd->bi_dram[bank].start;
while (ram_check < bd->bi_dram[bank].size) {
ram_check += get_ram_size((void *)(start + ram_check),
(phys_size_t)SZ_1G);
}
total_ram_check += ram_check;
ram_check = 0;
}
/* If the ram_size is 2GB smaller, we can assume the IO space is
* not mapped in. gd->ram_size is the actual size of the dram
* not the accessible size.
*/
if (total_ram_check != gd->ram_size) {
puts("DDR: SDRAM size check failed!\n");
hang();
}
debug("DDR: SDRAM size check passed!\n");
}
/**
* sdram_calculate_size() - Calculate SDRAM size
*
* Calculate SDRAM device size based on SDRAM controller parameters.
* Size is specified in bytes.
*/
static phys_size_t sdram_calculate_size(struct altera_sdram_platdata *plat)
{
u32 dramaddrw = hmc_readl(plat, DRAMADDRW);
phys_size_t size = 1 << (DRAMADDRW_CFG_CS_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw));
size *= (2 << (hmc_ecc_readl(plat, DDRIOCTRL) &
DDR_HMC_DDRIOCTRL_IOSIZE_MSK));
return size;
}
/**
* sdram_mmr_init_full() - Function to initialize SDRAM MMR
*
* Initialize the SDRAM MMR.
*/
static int sdram_mmr_init_full(struct udevice *dev)
{
struct altera_sdram_platdata *plat = dev->platdata;
struct altera_sdram_priv *priv = dev_get_priv(dev);
u32 update_value, io48_value, ddrioctl;
u32 i;
int ret;
phys_size_t hw_size;
bd_t bd = {0};
/* Enable access to DDR from CPU master */
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_DDRREG),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE0),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1A),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1B),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1C),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1D),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1E),
CCU_ADBASE_DI_MASK);
/* Enable access to DDR from IO master */
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE0),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1A),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1B),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1C),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1D),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1E),
CCU_ADBASE_DI_MASK);
/* this enables nonsecure access to DDR */
/* mpuregion0addr_limit */
FW_MPU_DDR_SCR_WRITEL(0xFFFF0000, FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMIT);
FW_MPU_DDR_SCR_WRITEL(0x1F, FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMITEXT);
/* nonmpuregion0addr_limit */
FW_MPU_DDR_SCR_WRITEL(0xFFFF0000,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMIT);
FW_MPU_DDR_SCR_WRITEL(0x1F, FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMITEXT);
/* Enable mpuregion0enable and nonmpuregion0enable */
FW_MPU_DDR_SCR_WRITEL(MPUREGION0_ENABLE | NONMPUREGION0_ENABLE,
FW_MPU_DDR_SCR_EN_SET);
/* Ensure HMC clock is running */
if (poll_hmc_clock_status()) {
puts("DDR: Error as HMC clock not running\n");
return -1;
}
/* Try 3 times to do a calibration */
for (i = 0; i < 3; i++) {
ret = wait_for_bit_le32((const void *)(plat->hmc +
DDRCALSTAT),
DDR_HMC_DDRCALSTAT_CAL_MSK, true, 1000,
false);
if (!ret)
break;
emif_reset(plat);
}
if (ret) {
puts("DDR: Error as SDRAM calibration failed\n");
return -1;
}
debug("DDR: Calibration success\n");
u32 ctrlcfg0 = hmc_readl(plat, CTRLCFG0);
u32 ctrlcfg1 = hmc_readl(plat, CTRLCFG1);
u32 dramaddrw = hmc_readl(plat, DRAMADDRW);
u32 dramtim0 = hmc_readl(plat, DRAMTIMING0);
u32 caltim0 = hmc_readl(plat, CALTIMING0);
u32 caltim1 = hmc_readl(plat, CALTIMING1);
u32 caltim2 = hmc_readl(plat, CALTIMING2);
u32 caltim3 = hmc_readl(plat, CALTIMING3);
u32 caltim4 = hmc_readl(plat, CALTIMING4);
u32 caltim9 = hmc_readl(plat, CALTIMING9);
/*
* Configure the DDR IO size [0xFFCFB008]
* niosreserve0: Used to indicate DDR width &
* bit[7:0] = Number of data bits (bit[6:5] 0x01=32bit, 0x10=64bit)
* bit[8] = 1 if user-mode OCT is present
* bit[9] = 1 if warm reset compiled into EMIF Cal Code
* bit[10] = 1 if warm reset is on during generation in EMIF Cal
* niosreserve1: IP ADCDS version encoded as 16 bit value
* bit[2:0] = Variant (0=not special,1=FAE beta, 2=Customer beta,
* 3=EAP, 4-6 are reserved)
* bit[5:3] = Service Pack # (e.g. 1)
* bit[9:6] = Minor Release #
* bit[14:10] = Major Release #
*/
update_value = hmc_readl(plat, NIOSRESERVED0);
hmc_ecc_writel(plat, ((update_value & 0xFF) >> 5), DDRIOCTRL);
ddrioctl = hmc_ecc_readl(plat, DDRIOCTRL);
/* enable HPS interface to HMC */
hmc_ecc_writel(plat, DDR_HMC_HPSINTFCSEL_ENABLE_MASK, HPSINTFCSEL);
/* Set the DDR Configuration */
io48_value = DDR_CONFIG(CTRLCFG1_CFG_ADDR_ORDER(ctrlcfg1),
(DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw)),
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw),
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw));
update_value = match_ddr_conf(io48_value);
if (update_value)
ddr_sch_writel(plat, update_value, DDR_SCH_DDRCONF);
/* Configure HMC dramaddrw */
hmc_ecc_writel(plat, hmc_readl(plat, DRAMADDRW), DRAMADDRWIDTH);
/*
* Configure DDR timing
* RDTOMISS = tRTP + tRP + tRCD - BL/2
* WRTOMISS = WL + tWR + tRP + tRCD and
* WL = RL + BL/2 + 2 - rd-to-wr ; tWR = 15ns so...
* First part of equation is in memory clock units so divide by 2
* for HMC clock units. 1066MHz is close to 1ns so use 15 directly.
* WRTOMISS = ((RL + BL/2 + 2 + tWR) >> 1)- rd-to-wr + tRP + tRCD
*/
u32 burst_len = CTRLCFG0_CFG_CTRL_BURST_LEN(ctrlcfg0);
update_value = CALTIMING2_CFG_RD_TO_WR_PCH(caltim2) +
CALTIMING4_CFG_PCH_TO_VALID(caltim4) +
CALTIMING0_CFG_ACT_TO_RDWR(caltim0) -
(burst_len >> 2);
io48_value = (((DRAMTIMING0_CFG_TCL(dramtim0) + 2 + DDR_TWR +
(burst_len >> 1)) >> 1) -
/* Up to here was in memory cycles so divide by 2 */
CALTIMING1_CFG_RD_TO_WR(caltim1) +
CALTIMING0_CFG_ACT_TO_RDWR(caltim0) +
CALTIMING4_CFG_PCH_TO_VALID(caltim4));
ddr_sch_writel(plat, ((CALTIMING0_CFG_ACT_TO_ACT(caltim0) <<
DDR_SCH_DDRTIMING_ACTTOACT_OFF) |
(update_value << DDR_SCH_DDRTIMING_RDTOMISS_OFF) |
(io48_value << DDR_SCH_DDRTIMING_WRTOMISS_OFF) |
((burst_len >> 2) << DDR_SCH_DDRTIMING_BURSTLEN_OFF) |
(CALTIMING1_CFG_RD_TO_WR(caltim1) <<
DDR_SCH_DDRTIMING_RDTOWR_OFF) |
(CALTIMING3_CFG_WR_TO_RD(caltim3) <<
DDR_SCH_DDRTIMING_WRTORD_OFF) |
(((ddrioctl == 1) ? 1 : 0) <<
DDR_SCH_DDRTIMING_BWRATIO_OFF)),
DDR_SCH_DDRTIMING);
/* Configure DDR mode [precharge = 0] */
ddr_sch_writel(plat, ((ddrioctl ? 0 : 1) <<
DDR_SCH_DDRMOD_BWRATIOEXTENDED_OFF),
DDR_SCH_DDRMODE);
/* Configure the read latency */
ddr_sch_writel(plat, (DRAMTIMING0_CFG_TCL(dramtim0) >> 1) +
DDR_READ_LATENCY_DELAY,
DDR_SCH_READ_LATENCY);
/*
* Configuring timing values concerning activate commands
* [FAWBANK alway 1 because always 4 bank DDR]
*/
ddr_sch_writel(plat, ((CALTIMING0_CFG_ACT_TO_ACT_DB(caltim0) <<
DDR_SCH_ACTIVATE_RRD_OFF) |
(CALTIMING9_CFG_4_ACT_TO_ACT(caltim9) <<
DDR_SCH_ACTIVATE_FAW_OFF) |
(DDR_ACTIVATE_FAWBANK <<
DDR_SCH_ACTIVATE_FAWBANK_OFF)),
DDR_SCH_ACTIVATE);
/*
* Configuring timing values concerning device to device data bus
* ownership change
*/
ddr_sch_writel(plat, ((CALTIMING1_CFG_RD_TO_RD_DC(caltim1) <<
DDR_SCH_DEVTODEV_BUSRDTORD_OFF) |
(CALTIMING1_CFG_RD_TO_WR_DC(caltim1) <<
DDR_SCH_DEVTODEV_BUSRDTOWR_OFF) |
(CALTIMING3_CFG_WR_TO_RD_DC(caltim3) <<
DDR_SCH_DEVTODEV_BUSWRTORD_OFF)),
DDR_SCH_DEVTODEV);
/* assigning the SDRAM size */
unsigned long long size = sdram_calculate_size(plat);
/* If the size is invalid, use default Config size */
if (size <= 0)
hw_size = PHYS_SDRAM_1_SIZE;
else
hw_size = size;
/* Get bank configuration from devicetree */
ret = fdtdec_decode_ram_size(gd->fdt_blob, NULL, 0, NULL,
(phys_size_t *)&gd->ram_size, &bd);
if (ret) {
puts("DDR: Failed to decode memory node\n");
return -1;
}
if (gd->ram_size != hw_size)
printf("DDR: Warning: DRAM size from device tree mismatch with hardware.\n");
printf("DDR: %lld MiB\n", gd->ram_size >> 20);
/* Enable or disable the SDRAM ECC */
if (CTRLCFG1_CFG_CTRL_EN_ECC(ctrlcfg1)) {
setbits_le32(plat->hmc + ECCCTRL1,
(DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_ECC_EN_SET_MSK));
clrbits_le32(plat->hmc + ECCCTRL1,
(DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_CNT_RST_SET_MSK));
setbits_le32(plat->hmc + ECCCTRL2,
(DDR_HMC_ECCCTL2_RMW_EN_SET_MSK |
DDR_HMC_ECCCTL2_AWB_EN_SET_MSK));
hmc_ecc_writel(plat, DDR_HMC_ERRINTEN_INTMASK, ERRINTENS);
/* Enable non-secure writes to HMC Adapter for SDRAM ECC */
writel(FW_HMC_ADAPTOR_MPU_MASK, FW_HMC_ADAPTOR_REG_ADDR);
/* Initialize memory content if not from warm reset */
if (!cpu_has_been_warmreset())
sdram_init_ecc_bits(&bd);
} else {
clrbits_le32(plat->hmc + ECCCTRL1,
(DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_ECC_EN_SET_MSK));
clrbits_le32(plat->hmc + ECCCTRL2,
(DDR_HMC_ECCCTL2_RMW_EN_SET_MSK |
DDR_HMC_ECCCTL2_AWB_EN_SET_MSK));
}
sdram_size_check(&bd);
priv->info.base = bd.bi_dram[0].start;
priv->info.size = gd->ram_size;
debug("DDR: HMC init success\n");
return 0;
}
static int altera_sdram_ofdata_to_platdata(struct udevice *dev)
{
struct altera_sdram_platdata *plat = dev->platdata;
fdt_addr_t addr;
addr = dev_read_addr_index(dev, 0);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->ddr_sch = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 1);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->iomhc = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 2);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->hmc = (void __iomem *)addr;
return 0;
}
static int altera_sdram_probe(struct udevice *dev)
{
int ret;
struct altera_sdram_priv *priv = dev_get_priv(dev);
ret = reset_get_bulk(dev, &priv->resets);
if (ret) {
dev_err(dev, "Can't get reset: %d\n", ret);
return -ENODEV;
}
reset_deassert_bulk(&priv->resets);
if (sdram_mmr_init_full(dev) != 0) {
puts("SDRAM init failed.\n");
goto failed;
}
return 0;
failed:
reset_release_bulk(&priv->resets);
return -ENODEV;
}
static int altera_sdram_get_info(struct udevice *dev,
struct ram_info *info)
{
struct altera_sdram_priv *priv = dev_get_priv(dev);
info->base = priv->info.base;
info->size = priv->info.size;
return 0;
}
static struct ram_ops altera_sdram_ops = {
.get_info = altera_sdram_get_info,
};
static const struct udevice_id altera_sdram_ids[] = {
{ .compatible = "altr,sdr-ctl-s10" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(altera_sdram) = {
.name = "altr_sdr_ctl",
.id = UCLASS_RAM,
.of_match = altera_sdram_ids,
.ops = &altera_sdram_ops,
.ofdata_to_platdata = altera_sdram_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct altera_sdram_platdata),
.probe = altera_sdram_probe,
.priv_auto_alloc_size = sizeof(struct altera_sdram_priv),
};