u-boot/drivers/fpga/ivm_core.c

3168 lines
66 KiB
C
Raw Normal View History

/*
* Porting to u-boot:
*
* (C) Copyright 2010
* Stefano Babic, DENX Software Engineering, sbabic@denx.de.
*
* Lattice ispVME Embedded code to load Lattice's FPGA:
*
* Copyright 2009 Lattice Semiconductor Corp.
*
* ispVME Embedded allows programming of Lattice's suite of FPGA
* devices on embedded systems through the JTAG port. The software
* is distributed in source code form and is open to re - distribution
* and modification where applicable.
*
* Revision History of ivm_core.c module:
* 4/25/06 ht Change some variables from unsigned short or int
* to long int to make the code compiler independent.
* 5/24/06 ht Support using RESET (TRST) pin as a special purpose
* control pin such as triggering the loading of known
* state exit.
* 3/6/07 ht added functions to support output to terminals
*
* 09/11/07 NN Type cast mismatch variables
* Moved the sclock() function to hardware.c
* 08/28/08 NN Added Calculate checksum support.
* 4/1/09 Nguyen replaced the recursive function call codes on
* the ispVMLCOUNT function
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <linux/string.h>
#include <malloc.h>
#include <lattice.h>
#define vme_out_char(c) printf("%c", c)
#define vme_out_hex(c) printf("%x", c)
#define vme_out_string(s) printf("%s", s)
/*
*
* Global variables used to specify the flow control and data type.
*
* g_usFlowControl: flow control register. Each bit in the
* register can potentially change the
* personality of the embedded engine.
* g_usDataType: holds the data type of the current row.
*
*/
static unsigned short g_usFlowControl;
unsigned short g_usDataType;
/*
*
* Global variables used to specify the ENDDR and ENDIR.
*
* g_ucEndDR: the state that the device goes to after SDR.
* g_ucEndIR: the state that the device goes to after SIR.
*
*/
unsigned char g_ucEndDR = DRPAUSE;
unsigned char g_ucEndIR = IRPAUSE;
/*
*
* Global variables used to support header/trailer.
*
* g_usHeadDR: the number of lead devices in bypass.
* g_usHeadIR: the sum of IR length of lead devices.
* g_usTailDR: the number of tail devices in bypass.
* g_usTailIR: the sum of IR length of tail devices.
*
*/
static unsigned short g_usHeadDR;
static unsigned short g_usHeadIR;
static unsigned short g_usTailDR;
static unsigned short g_usTailIR;
/*
*
* Global variable to store the number of bits of data or instruction
* to be shifted into or out from the device.
*
*/
static unsigned short g_usiDataSize;
/*
*
* Stores the frequency. Default to 1 MHz.
*
*/
static int g_iFrequency = 1000;
/*
*
* Stores the maximum amount of ram needed to hold a row of data.
*
*/
static unsigned short g_usMaxSize;
/*
*
* Stores the LSH or RSH value.
*
*/
static unsigned short g_usShiftValue;
/*
*
* Stores the current repeat loop value.
*
*/
static unsigned short g_usRepeatLoops;
/*
*
* Stores the current vendor.
*
*/
static signed char g_cVendor = LATTICE;
/*
*
* Stores the VME file CRC.
*
*/
unsigned short g_usCalculatedCRC;
/*
*
* Stores the Device Checksum.
*
*/
/* 08/28/08 NN Added Calculate checksum support. */
unsigned long g_usChecksum;
static unsigned int g_uiChecksumIndex;
/*
*
* Stores the current state of the JTAG state machine.
*
*/
static signed char g_cCurrentJTAGState;
/*
*
* Global variables used to support looping.
*
* g_pucHeapMemory: holds the entire repeat loop.
* g_iHeapCounter: points to the current byte in the repeat loop.
* g_iHEAPSize: the current size of the repeat in bytes.
*
*/
unsigned char *g_pucHeapMemory;
unsigned short g_iHeapCounter;
unsigned short g_iHEAPSize;
static unsigned short previous_size;
/*
*
* Global variables used to support intelligent programming.
*
* g_usIntelDataIndex: points to the current byte of the
* intelligent buffer.
* g_usIntelBufferSize: holds the size of the intelligent
* buffer.
*
*/
unsigned short g_usIntelDataIndex;
unsigned short g_usIntelBufferSize;
/*
*
* Supported VME versions.
*
*/
const char *const g_szSupportedVersions[] = {
"__VME2.0", "__VME3.0", "____12.0", "____12.1", 0};
/*
*
* Holds the maximum size of each respective buffer. These variables are used
* to write the HEX files when converting VME to HEX.
*
*/
static unsigned short g_usTDOSize;
static unsigned short g_usMASKSize;
static unsigned short g_usTDISize;
static unsigned short g_usDMASKSize;
static unsigned short g_usLCOUNTSize;
static unsigned short g_usHDRSize;
static unsigned short g_usTDRSize;
static unsigned short g_usHIRSize;
static unsigned short g_usTIRSize;
static unsigned short g_usHeapSize;
/*
*
* Global variables used to store data.
*
* g_pucOutMaskData: local RAM to hold one row of MASK data.
* g_pucInData: local RAM to hold one row of TDI data.
* g_pucOutData: local RAM to hold one row of TDO data.
* g_pucHIRData: local RAM to hold the current SIR header.
* g_pucTIRData: local RAM to hold the current SIR trailer.
* g_pucHDRData: local RAM to hold the current SDR header.
* g_pucTDRData: local RAM to hold the current SDR trailer.
* g_pucIntelBuffer: local RAM to hold the current intelligent buffer
* g_pucOutDMaskData: local RAM to hold one row of DMASK data.
*
*/
unsigned char *g_pucOutMaskData = NULL,
*g_pucInData = NULL,
*g_pucOutData = NULL,
*g_pucHIRData = NULL,
*g_pucTIRData = NULL,
*g_pucHDRData = NULL,
*g_pucTDRData = NULL,
*g_pucIntelBuffer = NULL,
*g_pucOutDMaskData = NULL;
/*
*
* JTAG state machine transition table.
*
*/
struct {
unsigned char CurState; /* From this state */
unsigned char NextState; /* Step to this state */
unsigned char Pattern; /* The tragetory of TMS */
unsigned char Pulses; /* The number of steps */
} g_JTAGTransistions[25] = {
{ RESET, RESET, 0xFC, 6 }, /* Transitions from RESET */
{ RESET, IDLE, 0x00, 1 },
{ RESET, DRPAUSE, 0x50, 5 },
{ RESET, IRPAUSE, 0x68, 6 },
{ IDLE, RESET, 0xE0, 3 }, /* Transitions from IDLE */
{ IDLE, DRPAUSE, 0xA0, 4 },
{ IDLE, IRPAUSE, 0xD0, 5 },
{ DRPAUSE, RESET, 0xF8, 5 }, /* Transitions from DRPAUSE */
{ DRPAUSE, IDLE, 0xC0, 3 },
{ DRPAUSE, IRPAUSE, 0xF4, 7 },
{ DRPAUSE, DRPAUSE, 0xE8, 6 },/* 06/14/06 Support POLL STATUS LOOP*/
{ IRPAUSE, RESET, 0xF8, 5 }, /* Transitions from IRPAUSE */
{ IRPAUSE, IDLE, 0xC0, 3 },
{ IRPAUSE, DRPAUSE, 0xE8, 6 },
{ DRPAUSE, SHIFTDR, 0x80, 2 }, /* Extra transitions using SHIFTDR */
{ IRPAUSE, SHIFTDR, 0xE0, 5 },
{ SHIFTDR, DRPAUSE, 0x80, 2 },
{ SHIFTDR, IDLE, 0xC0, 3 },
{ IRPAUSE, SHIFTIR, 0x80, 2 },/* Extra transitions using SHIFTIR */
{ SHIFTIR, IRPAUSE, 0x80, 2 },
{ SHIFTIR, IDLE, 0xC0, 3 },
{ DRPAUSE, DRCAPTURE, 0xE0, 4 }, /* 11/15/05 Support DRCAPTURE*/
{ DRCAPTURE, DRPAUSE, 0x80, 2 },
{ IDLE, DRCAPTURE, 0x80, 2 },
{ IRPAUSE, DRCAPTURE, 0xE0, 4 }
};
/*
*
* List to hold all LVDS pairs.
*
*/
LVDSPair *g_pLVDSList;
unsigned short g_usLVDSPairCount;
/*
*
* Function prototypes.
*
*/
static signed char ispVMDataCode(void);
static long int ispVMDataSize(void);
static void ispVMData(unsigned char *Data);
static signed char ispVMShift(signed char Code);
static signed char ispVMAmble(signed char Code);
static signed char ispVMLoop(unsigned short a_usLoopCount);
static signed char ispVMBitShift(signed char mode, unsigned short bits);
static void ispVMComment(unsigned short a_usCommentSize);
static void ispVMHeader(unsigned short a_usHeaderSize);
static signed char ispVMLCOUNT(unsigned short a_usCountSize);
static void ispVMClocks(unsigned short Clocks);
static void ispVMBypass(signed char ScanType, unsigned short Bits);
static void ispVMStateMachine(signed char NextState);
static signed char ispVMSend(unsigned short int);
static signed char ispVMRead(unsigned short int);
static signed char ispVMReadandSave(unsigned short int);
static signed char ispVMProcessLVDS(unsigned short a_usLVDSCount);
static void ispVMMemManager(signed char types, unsigned short size);
/*
*
* External variables and functions in hardware.c module
*
*/
static signed char g_cCurrentJTAGState;
#ifdef DEBUG
/*
*
* GetState
*
* Returns the state as a string based on the opcode. Only used
* for debugging purposes.
*
*/
const char *GetState(unsigned char a_ucState)
{
switch (a_ucState) {
case RESET:
return "RESET";
case IDLE:
return "IDLE";
case IRPAUSE:
return "IRPAUSE";
case DRPAUSE:
return "DRPAUSE";
case SHIFTIR:
return "SHIFTIR";
case SHIFTDR:
return "SHIFTDR";
case DRCAPTURE:/* 11/15/05 support DRCAPTURE*/
return "DRCAPTURE";
default:
break;
}
return 0;
}
/*
*
* PrintData
*
* Prints the data. Only used for debugging purposes.
*
*/
void PrintData(unsigned short a_iDataSize, unsigned char *a_pucData)
{
/* 09/11/07 NN added local variables initialization */
unsigned short usByteSize = 0;
unsigned short usBitIndex = 0;
signed short usByteIndex = 0;
unsigned char ucByte = 0;
unsigned char ucFlipByte = 0;
if (a_iDataSize % 8) {
/* 09/11/07 NN Type cast mismatch variables */
usByteSize = (unsigned short)(a_iDataSize / 8 + 1);
} else {
/* 09/11/07 NN Type cast mismatch variables */
usByteSize = (unsigned short)(a_iDataSize / 8);
}
puts("(");
/* 09/11/07 NN Type cast mismatch variables */
for (usByteIndex = (signed short)(usByteSize - 1);
usByteIndex >= 0; usByteIndex--) {
ucByte = a_pucData[usByteIndex];
ucFlipByte = 0x00;
/*
*
* Flip each byte.
*
*/
for (usBitIndex = 0; usBitIndex < 8; usBitIndex++) {
ucFlipByte <<= 1;
if (ucByte & 0x1) {
ucFlipByte |= 0x1;
}
ucByte >>= 1;
}
/*
*
* Print the flipped byte.
*
*/
printf("%.02X", ucFlipByte);
if ((usByteSize - usByteIndex) % 40 == 39) {
puts("\n\t\t");
}
if (usByteIndex < 0)
break;
}
puts(")");
}
#endif /* DEBUG */
void ispVMMemManager(signed char cTarget, unsigned short usSize)
{
switch (cTarget) {
case XTDI:
case TDI:
if (g_pucInData != NULL) {
if (previous_size == usSize) {/*memory exist*/
break;
} else {
free(g_pucInData);
g_pucInData = NULL;
}
}
g_pucInData = (unsigned char *) malloc(usSize / 8 + 2);
previous_size = usSize;
case XTDO:
case TDO:
if (g_pucOutData != NULL) {
if (previous_size == usSize) { /*already exist*/
break;
} else {
free(g_pucOutData);
g_pucOutData = NULL;
}
}
g_pucOutData = (unsigned char *) malloc(usSize / 8 + 2);
previous_size = usSize;
break;
case MASK:
if (g_pucOutMaskData != NULL) {
if (previous_size == usSize) {/*already allocated*/
break;
} else {
free(g_pucOutMaskData);
g_pucOutMaskData = NULL;
}
}
g_pucOutMaskData = (unsigned char *) malloc(usSize / 8 + 2);
previous_size = usSize;
break;
case HIR:
if (g_pucHIRData != NULL) {
free(g_pucHIRData);
g_pucHIRData = NULL;
}
g_pucHIRData = (unsigned char *) malloc(usSize / 8 + 2);
break;
case TIR:
if (g_pucTIRData != NULL) {
free(g_pucTIRData);
g_pucTIRData = NULL;
}
g_pucTIRData = (unsigned char *) malloc(usSize / 8 + 2);
break;
case HDR:
if (g_pucHDRData != NULL) {
free(g_pucHDRData);
g_pucHDRData = NULL;
}
g_pucHDRData = (unsigned char *) malloc(usSize / 8 + 2);
break;
case TDR:
if (g_pucTDRData != NULL) {
free(g_pucTDRData);
g_pucTDRData = NULL;
}
g_pucTDRData = (unsigned char *) malloc(usSize / 8 + 2);
break;
case HEAP:
if (g_pucHeapMemory != NULL) {
free(g_pucHeapMemory);
g_pucHeapMemory = NULL;
}
g_pucHeapMemory = (unsigned char *) malloc(usSize + 2);
break;
case DMASK:
if (g_pucOutDMaskData != NULL) {
if (previous_size == usSize) { /*already allocated*/
break;
} else {
free(g_pucOutDMaskData);
g_pucOutDMaskData = NULL;
}
}
g_pucOutDMaskData = (unsigned char *) malloc(usSize / 8 + 2);
previous_size = usSize;
break;
case LHEAP:
if (g_pucIntelBuffer != NULL) {
free(g_pucIntelBuffer);
g_pucIntelBuffer = NULL;
}
g_pucIntelBuffer = (unsigned char *) malloc(usSize + 2);
break;
case LVDS:
if (g_pLVDSList != NULL) {
free(g_pLVDSList);
g_pLVDSList = NULL;
}
g_pLVDSList = (LVDSPair *) malloc(usSize * sizeof(LVDSPair));
if (g_pLVDSList)
memset(g_pLVDSList, 0, usSize * sizeof(LVDSPair));
break;
default:
return;
}
}
void ispVMFreeMem(void)
{
if (g_pucHeapMemory != NULL) {
free(g_pucHeapMemory);
g_pucHeapMemory = NULL;
}
if (g_pucOutMaskData != NULL) {
free(g_pucOutMaskData);
g_pucOutMaskData = NULL;
}
if (g_pucInData != NULL) {
free(g_pucInData);
g_pucInData = NULL;
}
if (g_pucOutData != NULL) {
free(g_pucOutData);
g_pucOutData = NULL;
}
if (g_pucHIRData != NULL) {
free(g_pucHIRData);
g_pucHIRData = NULL;
}
if (g_pucTIRData != NULL) {
free(g_pucTIRData);
g_pucTIRData = NULL;
}
if (g_pucHDRData != NULL) {
free(g_pucHDRData);
g_pucHDRData = NULL;
}
if (g_pucTDRData != NULL) {
free(g_pucTDRData);
g_pucTDRData = NULL;
}
if (g_pucOutDMaskData != NULL) {
free(g_pucOutDMaskData);
g_pucOutDMaskData = NULL;
}
if (g_pucIntelBuffer != NULL) {
free(g_pucIntelBuffer);
g_pucIntelBuffer = NULL;
}
if (g_pLVDSList != NULL) {
free(g_pLVDSList);
g_pLVDSList = NULL;
}
}
/*
*
* ispVMDataSize
*
* Returns a VME-encoded number, usually used to indicate the
* bit length of an SIR/SDR command.
*
*/
long int ispVMDataSize()
{
/* 09/11/07 NN added local variables initialization */
long int iSize = 0;
signed char cCurrentByte = 0;
signed char cIndex = 0;
cIndex = 0;
while ((cCurrentByte = GetByte()) & 0x80) {
iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex;
cIndex += 7;
}
iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex;
return iSize;
}
/*
*
* ispVMCode
*
* This is the heart of the embedded engine. All the high-level opcodes
* are extracted here. Once they have been identified, then it
* will call other functions to handle the processing.
*
*/
signed char ispVMCode()
{
/* 09/11/07 NN added local variables initialization */
unsigned short iRepeatSize = 0;
signed char cOpcode = 0;
signed char cRetCode = 0;
unsigned char ucState = 0;
unsigned short usDelay = 0;
unsigned short usToggle = 0;
unsigned char usByte = 0;
/*
*
* Check the compression flag only if this is the first time
* this function is entered. Do not check the compression flag if
* it is being called recursively from other functions within
* the embedded engine.
*
*/
if (!(g_usDataType & LHEAP_IN) && !(g_usDataType & HEAP_IN)) {
usByte = GetByte();
if (usByte == 0xf1) {
g_usDataType |= COMPRESS;
} else if (usByte == 0xf2) {
g_usDataType &= ~COMPRESS;
} else {
return VME_INVALID_FILE;
}
}
/*
*
* Begin looping through all the VME opcodes.
*
*/
while ((cOpcode = GetByte()) >= 0) {
switch (cOpcode) {
case STATE:
/*
* Step the JTAG state machine.
*/
ucState = GetByte();
/*
* Step the JTAG state machine to DRCAPTURE
* to support Looping.
*/
if ((g_usDataType & LHEAP_IN) &&
(ucState == DRPAUSE) &&
(g_cCurrentJTAGState == ucState)) {
ispVMStateMachine(DRCAPTURE);
}
ispVMStateMachine(ucState);
#ifdef DEBUG
if (g_usDataType & LHEAP_IN) {
debug("LDELAY %s ", GetState(ucState));
} else {
debug("STATE %s;\n", GetState(ucState));
}
#endif /* DEBUG */
break;
case SIR:
case SDR:
case XSDR:
#ifdef DEBUG
switch (cOpcode) {
case SIR:
puts("SIR ");
break;
case SDR:
case XSDR:
if (g_usDataType & LHEAP_IN) {
puts("LSDR ");
} else {
puts("SDR ");
}
break;
}
#endif /* DEBUG */
/*
*
* Shift in data into the device.
*
*/
cRetCode = ispVMShift(cOpcode);
if (cRetCode != 0) {
return cRetCode;
}
break;
case WAIT:
/*
*
* Observe delay.
*
*/
/* 09/11/07 NN Type cast mismatch variables */
usDelay = (unsigned short) ispVMDataSize();
ispVMDelay(usDelay);
#ifdef DEBUG
if (usDelay & 0x8000) {
/*
* Since MSB is set, the delay time must be
* decoded to millisecond. The SVF2VME encodes
* the MSB to represent millisecond.
*/
usDelay &= ~0x8000;
if (g_usDataType & LHEAP_IN) {
printf("%.2E SEC;\n",
(float) usDelay / 1000);
} else {
printf("RUNTEST %.2E SEC;\n",
(float) usDelay / 1000);
}
} else {
/*
* Since MSB is not set, the delay time
* is given as microseconds.
*/
if (g_usDataType & LHEAP_IN) {
printf("%.2E SEC;\n",
(float) usDelay / 1000000);
} else {
printf("RUNTEST %.2E SEC;\n",
(float) usDelay / 1000000);
}
}
#endif /* DEBUG */
break;
case TCK:
/*
* Issue clock toggles.
*/
/* 09/11/07 NN Type cast mismatch variables */
usToggle = (unsigned short) ispVMDataSize();
ispVMClocks(usToggle);
#ifdef DEBUG
printf("RUNTEST %d TCK;\n", usToggle);
#endif /* DEBUG */
break;
case ENDDR:
/*
*
* Set the ENDDR.
*
*/
g_ucEndDR = GetByte();
#ifdef DEBUG
printf("ENDDR %s;\n", GetState(g_ucEndDR));
#endif /* DEBUG */
break;
case ENDIR:
/*
*
* Set the ENDIR.
*
*/
g_ucEndIR = GetByte();
#ifdef DEBUG
printf("ENDIR %s;\n", GetState(g_ucEndIR));
#endif /* DEBUG */
break;
case HIR:
case TIR:
case HDR:
case TDR:
#ifdef DEBUG
switch (cOpcode) {
case HIR:
puts("HIR ");
break;
case TIR:
puts("TIR ");
break;
case HDR:
puts("HDR ");
break;
case TDR:
puts("TDR ");
break;
}
#endif /* DEBUG */
/*
* Set the header/trailer of the device in order
* to bypass
* successfully.
*/
cRetCode = ispVMAmble(cOpcode);
if (cRetCode != 0) {
return cRetCode;
}
#ifdef DEBUG
puts(";\n");
#endif /* DEBUG */
break;
case MEM:
/*
* The maximum RAM required to support
* processing one row of the VME file.
*/
/* 09/11/07 NN Type cast mismatch variables */
g_usMaxSize = (unsigned short) ispVMDataSize();
#ifdef DEBUG
printf("// MEMSIZE %d\n", g_usMaxSize);
#endif /* DEBUG */
break;
case VENDOR:
/*
*
* Set the VENDOR type.
*
*/
cOpcode = GetByte();
switch (cOpcode) {
case LATTICE:
#ifdef DEBUG
puts("// VENDOR LATTICE\n");
#endif /* DEBUG */
g_cVendor = LATTICE;
break;
case ALTERA:
#ifdef DEBUG
puts("// VENDOR ALTERA\n");
#endif /* DEBUG */
g_cVendor = ALTERA;
break;
case XILINX:
#ifdef DEBUG
puts("// VENDOR XILINX\n");
#endif /* DEBUG */
g_cVendor = XILINX;
break;
default:
break;
}
break;
case SETFLOW:
/*
* Set the flow control. Flow control determines
* the personality of the embedded engine.
*/
/* 09/11/07 NN Type cast mismatch variables */
g_usFlowControl |= (unsigned short) ispVMDataSize();
break;
case RESETFLOW:
/*
*
* Unset the flow control.
*
*/
/* 09/11/07 NN Type cast mismatch variables */
g_usFlowControl &= (unsigned short) ~(ispVMDataSize());
break;
case HEAP:
/*
*
* Allocate heap size to store loops.
*
*/
cRetCode = GetByte();
if (cRetCode != SECUREHEAP) {
return VME_INVALID_FILE;
}
/* 09/11/07 NN Type cast mismatch variables */
g_iHEAPSize = (unsigned short) ispVMDataSize();
/*
* Store the maximum size of the HEAP buffer.
* Used to convert VME to HEX.
*/
if (g_iHEAPSize > g_usHeapSize) {
g_usHeapSize = g_iHEAPSize;
}
ispVMMemManager(HEAP, (unsigned short) g_iHEAPSize);
break;
case REPEAT:
/*
*
* Execute loops.
*
*/
g_usRepeatLoops = 0;
/* 09/11/07 NN Type cast mismatch variables */
iRepeatSize = (unsigned short) ispVMDataSize();
cRetCode = ispVMLoop((unsigned short) iRepeatSize);
if (cRetCode != 0) {
return cRetCode;
}
break;
case ENDLOOP:
/*
*
* Exit point from processing loops.
*
*/
return cRetCode;
case ENDVME:
/*
* The only valid exit point that indicates
* end of programming.
*/
return cRetCode;
case SHR:
/*
*
* Right-shift address.
*
*/
g_usFlowControl |= SHIFTRIGHT;
/* 09/11/07 NN Type cast mismatch variables */
g_usShiftValue = (unsigned short) (g_usRepeatLoops *
(unsigned short)GetByte());
break;
case SHL:
/*
* Left-shift address.
*/
g_usFlowControl |= SHIFTLEFT;
/* 09/11/07 NN Type cast mismatch variables */
g_usShiftValue = (unsigned short) (g_usRepeatLoops *
(unsigned short)GetByte());
break;
case FREQUENCY:
/*
*
* Set the frequency.
*
*/
/* 09/11/07 NN Type cast mismatch variables */
g_iFrequency = (int) (ispVMDataSize() / 1000);
if (g_iFrequency == 1)
g_iFrequency = 1000;
#ifdef DEBUG
printf("FREQUENCY %.2E HZ;\n",
(float) g_iFrequency * 1000);
#endif /* DEBUG */
break;
case LCOUNT:
/*
*
* Process LCOUNT command.
*
*/
cRetCode = ispVMLCOUNT((unsigned short)ispVMDataSize());
if (cRetCode != 0) {
return cRetCode;
}
break;
case VUES:
/*
*
* Set the flow control to verify USERCODE.
*
*/
g_usFlowControl |= VERIFYUES;
break;
case COMMENT:
/*
*
* Display comment.
*
*/
ispVMComment((unsigned short) ispVMDataSize());
break;
case LVDS:
/*
*
* Process LVDS command.
*
*/
ispVMProcessLVDS((unsigned short) ispVMDataSize());
break;
case HEADER:
/*
*
* Discard header.
*
*/
ispVMHeader((unsigned short) ispVMDataSize());
break;
/* 03/14/06 Support Toggle ispENABLE signal*/
case ispEN:
ucState = GetByte();
if ((ucState == ON) || (ucState == 0x01))
writePort(g_ucPinENABLE, 0x01);
else
writePort(g_ucPinENABLE, 0x00);
ispVMDelay(1);
break;
/* 05/24/06 support Toggle TRST pin*/
case TRST:
ucState = GetByte();
if (ucState == 0x01)
writePort(g_ucPinTRST, 0x01);
else
writePort(g_ucPinTRST, 0x00);
ispVMDelay(1);
break;
default:
/*
*
* Invalid opcode encountered.
*
*/
#ifdef DEBUG
printf("\nINVALID OPCODE: 0x%.2X\n", cOpcode);
#endif /* DEBUG */
return VME_INVALID_FILE;
}
}
/*
*
* Invalid exit point. Processing the token 'ENDVME' is the only
* valid way to exit the embedded engine.
*
*/
return VME_INVALID_FILE;
}
/*
*
* ispVMDataCode
*
* Processes the TDI/TDO/MASK/DMASK etc of an SIR/SDR command.
*
*/
signed char ispVMDataCode()
{
/* 09/11/07 NN added local variables initialization */
signed char cDataByte = 0;
signed char siDataSource = 0; /*source of data from file by default*/
if (g_usDataType & HEAP_IN) {
siDataSource = 1; /*the source of data from memory*/
}
/*
*
* Clear the data type register.
*
**/
g_usDataType &= ~(MASK_DATA + TDI_DATA +
TDO_DATA + DMASK_DATA + CMASK_DATA);
/*
* Iterate through SIR/SDR command and look for TDI,
* TDO, MASK, etc.
*/
while ((cDataByte = GetByte()) >= 0) {
ispVMMemManager(cDataByte, g_usMaxSize);
switch (cDataByte) {
case TDI:
/*
* Store the maximum size of the TDI buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usTDISize) {
g_usTDISize = g_usiDataSize;
}
/*
* Updated data type register to indicate that
* TDI data is currently being used. Process the
* data in the VME file into the TDI buffer.
*/
g_usDataType |= TDI_DATA;
ispVMData(g_pucInData);
break;
case XTDO:
/*
* Store the maximum size of the TDO buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usTDOSize) {
g_usTDOSize = g_usiDataSize;
}
/*
* Updated data type register to indicate that
* TDO data is currently being used.
*/
g_usDataType |= TDO_DATA;
break;
case TDO:
/*
* Store the maximum size of the TDO buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usTDOSize) {
g_usTDOSize = g_usiDataSize;
}
/*
* Updated data type register to indicate
* that TDO data is currently being used.
* Process the data in the VME file into the
* TDO buffer.
*/
g_usDataType |= TDO_DATA;
ispVMData(g_pucOutData);
break;
case MASK:
/*
* Store the maximum size of the MASK buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usMASKSize) {
g_usMASKSize = g_usiDataSize;
}
/*
* Updated data type register to indicate that
* MASK data is currently being used. Process
* the data in the VME file into the MASK buffer
*/
g_usDataType |= MASK_DATA;
ispVMData(g_pucOutMaskData);
break;
case DMASK:
/*
* Store the maximum size of the DMASK buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usDMASKSize) {
g_usDMASKSize = g_usiDataSize;
}
/*
* Updated data type register to indicate that
* DMASK data is currently being used. Process
* the data in the VME file into the DMASK
* buffer.
*/
g_usDataType |= DMASK_DATA;
ispVMData(g_pucOutDMaskData);
break;
case CMASK:
/*
* Updated data type register to indicate that
* MASK data is currently being used. Process
* the data in the VME file into the MASK buffer
*/
g_usDataType |= CMASK_DATA;
ispVMData(g_pucOutMaskData);
break;
case CONTINUE:
return 0;
default:
/*
* Encountered invalid opcode.
*/
return VME_INVALID_FILE;
}
switch (cDataByte) {
case TDI:
/*
* Left bit shift. Used when performing
* algorithm looping.
*/
if (g_usFlowControl & SHIFTLEFT) {
ispVMBitShift(SHL, g_usShiftValue);
g_usFlowControl &= ~SHIFTLEFT;
}
/*
* Right bit shift. Used when performing
* algorithm looping.
*/
if (g_usFlowControl & SHIFTRIGHT) {
ispVMBitShift(SHR, g_usShiftValue);
g_usFlowControl &= ~SHIFTRIGHT;
}
default:
break;
}
if (siDataSource) {
g_usDataType |= HEAP_IN; /*restore from memory*/
}
}
if (siDataSource) { /*fetch data from heap memory upon return*/
g_usDataType |= HEAP_IN;
}
if (cDataByte < 0) {
/*
* Encountered invalid opcode.
*/
return VME_INVALID_FILE;
} else {
return 0;
}
}
/*
*
* ispVMData
* Extract one row of data operand from the current data type opcode. Perform
* the decompression if necessary. Extra RAM is not required for the
* decompression process. The decompression scheme employed in this module
* is on row by row basis. The format of the data stream:
* [compression code][compressed data stream]
* 0x00 --No compression
* 0x01 --Compress by 0x00.
* Example:
* Original stream: 0x000000000000000000000001
* Compressed stream: 0x01000901
* Detail: 0x01 is the code, 0x00 is the key,
* 0x09 is the count of 0x00 bytes,
* 0x01 is the uncompressed byte.
* 0x02 --Compress by 0xFF.
* Example:
* Original stream: 0xFFFFFFFFFFFFFFFFFFFFFF01
* Compressed stream: 0x02FF0901
* Detail: 0x02 is the code, 0xFF is the key,
* 0x09 is the count of 0xFF bytes,
* 0x01 is the uncompressed byte.
* 0x03
* : :
* 0xFE -- Compress by nibble blocks.
* Example:
* Original stream: 0x84210842108421084210
* Compressed stream: 0x0584210
* Detail: 0x05 is the code, means 5 nibbles block.
* 0x84210 is the 5 nibble blocks.
* The whole row is 80 bits given by g_usiDataSize.
* The number of times the block repeat itself
* is found by g_usiDataSize/(4*0x05) which is 4.
* 0xFF -- Compress by the most frequently happen byte.
* Example:
* Original stream: 0x04020401030904040404
* Compressed stream: 0xFF04(0,1,0x02,0,1,0x01,1,0x03,1,0x09,0,0,0)
* or: 0xFF044090181C240
* Detail: 0xFF is the code, 0x04 is the key.
* a bit of 0 represent the key shall be put into
* the current bit position and a bit of 1
* represent copying the next of 8 bits of data
* in.
*
*/
void ispVMData(unsigned char *ByteData)
{
/* 09/11/07 NN added local variables initialization */
unsigned short size = 0;
unsigned short i, j, m, getData = 0;
unsigned char cDataByte = 0;
unsigned char compress = 0;
unsigned short FFcount = 0;
unsigned char compr_char = 0xFF;
unsigned short index = 0;
signed char compression = 0;
/*convert number in bits to bytes*/
if (g_usiDataSize % 8 > 0) {
/* 09/11/07 NN Type cast mismatch variables */
size = (unsigned short)(g_usiDataSize / 8 + 1);
} else {
/* 09/11/07 NN Type cast mismatch variables */
size = (unsigned short)(g_usiDataSize / 8);
}
/*
* If there is compression, then check if compress by key
* of 0x00 or 0xFF or by other keys or by nibble blocks
*/
if (g_usDataType & COMPRESS) {
compression = 1;
compress = GetByte();
if ((compress == VAR) && (g_usDataType & HEAP_IN)) {
getData = 1;
g_usDataType &= ~(HEAP_IN);
compress = GetByte();
}
switch (compress) {
case 0x00:
/* No compression */
compression = 0;
break;
case 0x01:
/* Compress by byte 0x00 */
compr_char = 0x00;
break;
case 0x02:
/* Compress by byte 0xFF */
compr_char = 0xFF;
break;
case 0xFF:
/* Huffman encoding */
compr_char = GetByte();
i = 8;
for (index = 0; index < size; index++) {
ByteData[index] = 0x00;
if (i > 7) {
cDataByte = GetByte();
i = 0;
}
if ((cDataByte << i++) & 0x80)
m = 8;
else {
ByteData[index] = compr_char;
m = 0;
}
for (j = 0; j < m; j++) {
if (i > 7) {
cDataByte = GetByte();
i = 0;
}
ByteData[index] |=
((cDataByte << i++) & 0x80) >> j;
}
}
size = 0;
break;
default:
for (index = 0; index < size; index++)
ByteData[index] = 0x00;
for (index = 0; index < compress; index++) {
if (index % 2 == 0)
cDataByte = GetByte();
for (i = 0; i < size * 2 / compress; i++) {
j = (unsigned short)(index +
(i * (unsigned short)compress));
/*clear the nibble to zero first*/
if (j%2) {
if (index % 2)
ByteData[j/2] |=
cDataByte & 0xF;
else
ByteData[j/2] |=
cDataByte >> 4;
} else {
if (index % 2)
ByteData[j/2] |=
cDataByte << 4;
else
ByteData[j/2] |=
cDataByte & 0xF0;
}
}
}
size = 0;
break;
}
}
FFcount = 0;
/* Decompress by byte 0x00 or 0xFF */
for (index = 0; index < size; index++) {
if (FFcount <= 0) {
cDataByte = GetByte();
if ((cDataByte == VAR) && (g_usDataType&HEAP_IN) &&
!getData && !(g_usDataType&COMPRESS)) {
getData = 1;
g_usDataType &= ~(HEAP_IN);
cDataByte = GetByte();
}
ByteData[index] = cDataByte;
if ((compression) && (cDataByte == compr_char))
/* 09/11/07 NN Type cast mismatch variables */
FFcount = (unsigned short) ispVMDataSize();
/*The number of 0xFF or 0x00 bytes*/
} else {
FFcount--; /*Use up the 0xFF chain first*/
ByteData[index] = compr_char;
}
}
if (getData) {
g_usDataType |= HEAP_IN;
getData = 0;
}
}
/*
*
* ispVMShift
*
* Processes the SDR/XSDR/SIR commands.
*
*/
signed char ispVMShift(signed char a_cCode)
{
/* 09/11/07 NN added local variables initialization */
unsigned short iDataIndex = 0;
unsigned short iReadLoop = 0;
signed char cRetCode = 0;
cRetCode = 0;
/* 09/11/07 NN Type cast mismatch variables */
g_usiDataSize = (unsigned short) ispVMDataSize();
/*clear the flags first*/
g_usDataType &= ~(SIR_DATA + EXPRESS + SDR_DATA);
switch (a_cCode) {
case SIR:
g_usDataType |= SIR_DATA;
/*
* 1/15/04 If performing cascading, then go directly to SHIFTIR.
* Else, go to IRPAUSE before going to SHIFTIR
*/
if (g_usFlowControl & CASCADE) {
ispVMStateMachine(SHIFTIR);
} else {
ispVMStateMachine(IRPAUSE);
ispVMStateMachine(SHIFTIR);
if (g_usHeadIR > 0) {
ispVMBypass(HIR, g_usHeadIR);
sclock();
}
}
break;
case XSDR:
g_usDataType |= EXPRESS; /*mark simultaneous in and out*/
case SDR:
g_usDataType |= SDR_DATA;
/*
* 1/15/04 If already in SHIFTDR, then do not move state or
* shift in header. This would imply that the previously
* shifted frame was a cascaded frame.
*/
if (g_cCurrentJTAGState != SHIFTDR) {
/*
* 1/15/04 If performing cascading, then go directly
* to SHIFTDR. Else, go to DRPAUSE before going
* to SHIFTDR
*/
if (g_usFlowControl & CASCADE) {
if (g_cCurrentJTAGState == DRPAUSE) {
ispVMStateMachine(SHIFTDR);
/*
* 1/15/04 If cascade flag has been seat
* and the current state is DRPAUSE,
* this implies that the first cascaded
* frame is about to be shifted in. The
* header must be shifted prior to
* shifting the first cascaded frame.
*/
if (g_usHeadDR > 0) {
ispVMBypass(HDR, g_usHeadDR);
sclock();
}
} else {
ispVMStateMachine(SHIFTDR);
}
} else {
ispVMStateMachine(DRPAUSE);
ispVMStateMachine(SHIFTDR);
if (g_usHeadDR > 0) {
ispVMBypass(HDR, g_usHeadDR);
sclock();
}
}
}
break;
default:
return VME_INVALID_FILE;
}
cRetCode = ispVMDataCode();
if (cRetCode != 0) {
return VME_INVALID_FILE;
}
#ifdef DEBUG
printf("%d ", g_usiDataSize);
if (g_usDataType & TDI_DATA) {
puts("TDI ");
PrintData(g_usiDataSize, g_pucInData);
}
if (g_usDataType & TDO_DATA) {
puts("\n\t\tTDO ");
PrintData(g_usiDataSize, g_pucOutData);
}
if (g_usDataType & MASK_DATA) {
puts("\n\t\tMASK ");
PrintData(g_usiDataSize, g_pucOutMaskData);
}
if (g_usDataType & DMASK_DATA) {
puts("\n\t\tDMASK ");
PrintData(g_usiDataSize, g_pucOutDMaskData);
}
puts(";\n");
#endif /* DEBUG */
if (g_usDataType & TDO_DATA || g_usDataType & DMASK_DATA) {
if (g_usDataType & DMASK_DATA) {
cRetCode = ispVMReadandSave(g_usiDataSize);
if (!cRetCode) {
if (g_usTailDR > 0) {
sclock();
ispVMBypass(TDR, g_usTailDR);
}
ispVMStateMachine(DRPAUSE);
ispVMStateMachine(SHIFTDR);
if (g_usHeadDR > 0) {
ispVMBypass(HDR, g_usHeadDR);
sclock();
}
for (iDataIndex = 0;
iDataIndex < g_usiDataSize / 8 + 1;
iDataIndex++)
g_pucInData[iDataIndex] =
g_pucOutData[iDataIndex];
g_usDataType &= ~(TDO_DATA + DMASK_DATA);
cRetCode = ispVMSend(g_usiDataSize);
}
} else {
cRetCode = ispVMRead(g_usiDataSize);
if (cRetCode == -1 && g_cVendor == XILINX) {
for (iReadLoop = 0; iReadLoop < 30;
iReadLoop++) {
cRetCode = ispVMRead(g_usiDataSize);
if (!cRetCode) {
break;
} else {
/* Always DRPAUSE */
ispVMStateMachine(DRPAUSE);
/*
* Bypass other devices
* when appropriate
*/
ispVMBypass(TDR, g_usTailDR);
ispVMStateMachine(g_ucEndDR);
ispVMStateMachine(IDLE);
ispVMDelay(1000);
}
}
}
}
} else { /*TDI only*/
cRetCode = ispVMSend(g_usiDataSize);
}
/*transfer the input data to the output buffer for the next verify*/
if ((g_usDataType & EXPRESS) || (a_cCode == SDR)) {
if (g_pucOutData) {
for (iDataIndex = 0; iDataIndex < g_usiDataSize / 8 + 1;
iDataIndex++)
g_pucOutData[iDataIndex] =
g_pucInData[iDataIndex];
}
}
switch (a_cCode) {
case SIR:
/* 1/15/04 If not performing cascading, then shift ENDIR */
if (!(g_usFlowControl & CASCADE)) {
if (g_usTailIR > 0) {
sclock();
ispVMBypass(TIR, g_usTailIR);
}
ispVMStateMachine(g_ucEndIR);
}
break;
case XSDR:
case SDR:
/* 1/15/04 If not performing cascading, then shift ENDDR */
if (!(g_usFlowControl & CASCADE)) {
if (g_usTailDR > 0) {
sclock();
ispVMBypass(TDR, g_usTailDR);
}
ispVMStateMachine(g_ucEndDR);
}
break;
default:
break;
}
return cRetCode;
}
/*
*
* ispVMAmble
*
* This routine is to extract Header and Trailer parameter for SIR and
* SDR operations.
*
* The Header and Trailer parameter are the pre-amble and post-amble bit
* stream need to be shifted into TDI or out of TDO of the devices. Mostly
* is for the purpose of bypassing the leading or trailing devices. ispVM
* supports only shifting data into TDI to bypass the devices.
*
* For a single device, the header and trailer parameters are all set to 0
* as default by ispVM. If it is for multiple devices, the header and trailer
* value will change as specified by the VME file.
*
*/
signed char ispVMAmble(signed char Code)
{
signed char compress = 0;
/* 09/11/07 NN Type cast mismatch variables */
g_usiDataSize = (unsigned short)ispVMDataSize();
#ifdef DEBUG
printf("%d", g_usiDataSize);
#endif /* DEBUG */
if (g_usiDataSize) {
/*
* Discard the TDI byte and set the compression bit in the data
* type register to false if compression is set because TDI data
* after HIR/HDR/TIR/TDR is not compressed.
*/
GetByte();
if (g_usDataType & COMPRESS) {
g_usDataType &= ~(COMPRESS);
compress = 1;
}
}
switch (Code) {
case HIR:
/*
* Store the maximum size of the HIR buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usHIRSize) {
g_usHIRSize = g_usiDataSize;
}
/*
* Assign the HIR value and allocate memory.
*/
g_usHeadIR = g_usiDataSize;
if (g_usHeadIR) {
ispVMMemManager(HIR, g_usHeadIR);
ispVMData(g_pucHIRData);
#ifdef DEBUG
puts(" TDI ");
PrintData(g_usHeadIR, g_pucHIRData);
#endif /* DEBUG */
}
break;
case TIR:
/*
* Store the maximum size of the TIR buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usTIRSize) {
g_usTIRSize = g_usiDataSize;
}
/*
* Assign the TIR value and allocate memory.
*/
g_usTailIR = g_usiDataSize;
if (g_usTailIR) {
ispVMMemManager(TIR, g_usTailIR);
ispVMData(g_pucTIRData);
#ifdef DEBUG
puts(" TDI ");
PrintData(g_usTailIR, g_pucTIRData);
#endif /* DEBUG */
}
break;
case HDR:
/*
* Store the maximum size of the HDR buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usHDRSize) {
g_usHDRSize = g_usiDataSize;
}
/*
* Assign the HDR value and allocate memory.
*
*/
g_usHeadDR = g_usiDataSize;
if (g_usHeadDR) {
ispVMMemManager(HDR, g_usHeadDR);
ispVMData(g_pucHDRData);
#ifdef DEBUG
puts(" TDI ");
PrintData(g_usHeadDR, g_pucHDRData);
#endif /* DEBUG */
}
break;
case TDR:
/*
* Store the maximum size of the TDR buffer.
* Used to convert VME to HEX.
*/
if (g_usiDataSize > g_usTDRSize) {
g_usTDRSize = g_usiDataSize;
}
/*
* Assign the TDR value and allocate memory.
*
*/
g_usTailDR = g_usiDataSize;
if (g_usTailDR) {
ispVMMemManager(TDR, g_usTailDR);
ispVMData(g_pucTDRData);
#ifdef DEBUG
puts(" TDI ");
PrintData(g_usTailDR, g_pucTDRData);
#endif /* DEBUG */
}
break;
default:
break;
}
/*
*
* Re-enable compression if it was previously set.
*
**/
if (compress) {
g_usDataType |= COMPRESS;
}
if (g_usiDataSize) {
Code = GetByte();
if (Code == CONTINUE) {
return 0;
} else {
/*
* Encountered invalid opcode.
*/
return VME_INVALID_FILE;
}
}
return 0;
}
/*
*
* ispVMLoop
*
* Perform the function call upon by the REPEAT opcode.
* Memory is to be allocated to store the entire loop from REPEAT to ENDLOOP.
* After the loop is stored then execution begin. The REPEATLOOP flag is set
* on the g_usFlowControl register to indicate the repeat loop is in session
* and therefore fetch opcode from the memory instead of from the file.
*
*/
signed char ispVMLoop(unsigned short a_usLoopCount)
{
/* 09/11/07 NN added local variables initialization */
signed char cRetCode = 0;
unsigned short iHeapIndex = 0;
unsigned short iLoopIndex = 0;
g_usShiftValue = 0;
for (iHeapIndex = 0; iHeapIndex < g_iHEAPSize; iHeapIndex++) {
g_pucHeapMemory[iHeapIndex] = GetByte();
}
if (g_pucHeapMemory[iHeapIndex - 1] != ENDLOOP) {
return VME_INVALID_FILE;
}
g_usFlowControl |= REPEATLOOP;
g_usDataType |= HEAP_IN;
for (iLoopIndex = 0; iLoopIndex < a_usLoopCount; iLoopIndex++) {
g_iHeapCounter = 0;
cRetCode = ispVMCode();
g_usRepeatLoops++;
if (cRetCode < 0) {
break;
}
}
g_usDataType &= ~(HEAP_IN);
g_usFlowControl &= ~(REPEATLOOP);
return cRetCode;
}
/*
*
* ispVMBitShift
*
* Shift the TDI stream left or right by the number of bits. The data in
* *g_pucInData is of the VME format, so the actual shifting is the reverse of
* IEEE 1532 or SVF format.
*
*/
signed char ispVMBitShift(signed char mode, unsigned short bits)
{
/* 09/11/07 NN added local variables initialization */
unsigned short i = 0;
unsigned short size = 0;
unsigned short tmpbits = 0;
if (g_usiDataSize % 8 > 0) {
/* 09/11/07 NN Type cast mismatch variables */
size = (unsigned short)(g_usiDataSize / 8 + 1);
} else {
/* 09/11/07 NN Type cast mismatch variables */
size = (unsigned short)(g_usiDataSize / 8);
}
switch (mode) {
case SHR:
for (i = 0; i < size; i++) {
if (g_pucInData[i] != 0) {
tmpbits = bits;
while (tmpbits > 0) {
g_pucInData[i] <<= 1;
if (g_pucInData[i] == 0) {
i--;
g_pucInData[i] = 1;
}
tmpbits--;
}
}
}
break;
case SHL:
for (i = 0; i < size; i++) {
if (g_pucInData[i] != 0) {
tmpbits = bits;
while (tmpbits > 0) {
g_pucInData[i] >>= 1;
if (g_pucInData[i] == 0) {
i--;
g_pucInData[i] = 8;
}
tmpbits--;
}
}
}
break;
default:
return VME_INVALID_FILE;
}
return 0;
}
/*
*
* ispVMComment
*
* Displays the SVF comments.
*
*/
void ispVMComment(unsigned short a_usCommentSize)
{
char cCurByte = 0;
for (; a_usCommentSize > 0; a_usCommentSize--) {
/*
*
* Print character to the terminal.
*
**/
cCurByte = GetByte();
vme_out_char(cCurByte);
}
cCurByte = '\n';
vme_out_char(cCurByte);
}
/*
*
* ispVMHeader
*
* Iterate the length of the header and discard it.
*
*/
void ispVMHeader(unsigned short a_usHeaderSize)
{
for (; a_usHeaderSize > 0; a_usHeaderSize--) {
GetByte();
}
}
/*
*
* ispVMCalculateCRC32
*
* Calculate the 32-bit CRC.
*
*/
void ispVMCalculateCRC32(unsigned char a_ucData)
{
/* 09/11/07 NN added local variables initialization */
unsigned char ucIndex = 0;
unsigned char ucFlipData = 0;
unsigned short usCRCTableEntry = 0;
unsigned int crc_table[16] = {
0x0000, 0xCC01, 0xD801,
0x1400, 0xF001, 0x3C00,
0x2800, 0xE401, 0xA001,
0x6C00, 0x7800, 0xB401,
0x5000, 0x9C01, 0x8801,
0x4400
};
for (ucIndex = 0; ucIndex < 8; ucIndex++) {
ucFlipData <<= 1;
if (a_ucData & 0x01) {
ucFlipData |= 0x01;
}
a_ucData >>= 1;
}
/* 09/11/07 NN Type cast mismatch variables */
usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]);
g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF);
g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^
usCRCTableEntry ^ crc_table[ucFlipData & 0xF]);
usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]);
g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF);
g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^
usCRCTableEntry ^ crc_table[(ucFlipData >> 4) & 0xF]);
}
/*
*
* ispVMLCOUNT
*
* Process the intelligent programming loops.
*
*/
signed char ispVMLCOUNT(unsigned short a_usCountSize)
{
unsigned short usContinue = 1;
unsigned short usIntelBufferIndex = 0;
unsigned short usCountIndex = 0;
signed char cRetCode = 0;
signed char cRepeatHeap = 0;
signed char cOpcode = 0;
unsigned char ucState = 0;
unsigned short usDelay = 0;
unsigned short usToggle = 0;
unsigned char usByte = 0;
g_usIntelBufferSize = (unsigned short)ispVMDataSize();
/*
* Allocate memory for intel buffer.
*
*/
ispVMMemManager(LHEAP, g_usIntelBufferSize);
/*
* Store the maximum size of the intelligent buffer.
* Used to convert VME to HEX.
*/
if (g_usIntelBufferSize > g_usLCOUNTSize) {
g_usLCOUNTSize = g_usIntelBufferSize;
}
/*
* Copy intel data to the buffer.
*/
for (usIntelBufferIndex = 0; usIntelBufferIndex < g_usIntelBufferSize;
usIntelBufferIndex++) {
g_pucIntelBuffer[usIntelBufferIndex] = GetByte();
}
/*
* Set the data type register to get data from the intelligent
* data buffer.
*/
g_usDataType |= LHEAP_IN;
/*
*
* If the HEAP_IN flag is set, temporarily unset the flag so data will be
* retrieved from the status buffer.
*
**/
if (g_usDataType & HEAP_IN) {
g_usDataType &= ~HEAP_IN;
cRepeatHeap = 1;
}
#ifdef DEBUG
printf("LCOUNT %d;\n", a_usCountSize);
#endif /* DEBUG */
/*
* Iterate through the intelligent programming command.
*/
for (usCountIndex = 0; usCountIndex < a_usCountSize; usCountIndex++) {
/*
*
* Initialize the intel data index to 0 before each iteration.
*
**/
g_usIntelDataIndex = 0;
cOpcode = 0;
ucState = 0;
usDelay = 0;
usToggle = 0;
usByte = 0;
usContinue = 1;
/*
*
* Begin looping through all the VME opcodes.
*
*/
/*
* 4/1/09 Nguyen replaced the recursive function call codes on
* the ispVMLCOUNT function
*
*/
while (usContinue) {
cOpcode = GetByte();
switch (cOpcode) {
case HIR:
case TIR:
case HDR:
case TDR:
/*
* Set the header/trailer of the device in order
* to bypass successfully.
*/
ispVMAmble(cOpcode);
break;
case STATE:
/*
* Step the JTAG state machine.
*/
ucState = GetByte();
/*
* Step the JTAG state machine to DRCAPTURE
* to support Looping.
*/
if ((g_usDataType & LHEAP_IN) &&
(ucState == DRPAUSE) &&
(g_cCurrentJTAGState == ucState)) {
ispVMStateMachine(DRCAPTURE);
}
ispVMStateMachine(ucState);
#ifdef DEBUG
printf("LDELAY %s ", GetState(ucState));
#endif /* DEBUG */
break;
case SIR:
#ifdef DEBUG
printf("SIR ");
#endif /* DEBUG */
/*
* Shift in data into the device.
*/
cRetCode = ispVMShift(cOpcode);
break;
case SDR:
#ifdef DEBUG
printf("LSDR ");
#endif /* DEBUG */
/*
* Shift in data into the device.
*/
cRetCode = ispVMShift(cOpcode);
break;
case WAIT:
/*
*
* Observe delay.
*
*/
usDelay = (unsigned short)ispVMDataSize();
ispVMDelay(usDelay);
#ifdef DEBUG
if (usDelay & 0x8000) {
/*
* Since MSB is set, the delay time must
* be decoded to millisecond. The
* SVF2VME encodes the MSB to represent
* millisecond.
*/
usDelay &= ~0x8000;
printf("%.2E SEC;\n",
(float) usDelay / 1000);
} else {
/*
* Since MSB is not set, the delay time
* is given as microseconds.
*/
printf("%.2E SEC;\n",
(float) usDelay / 1000000);
}
#endif /* DEBUG */
break;
case TCK:
/*
* Issue clock toggles.
*/
usToggle = (unsigned short)ispVMDataSize();
ispVMClocks(usToggle);
#ifdef DEBUG
printf("RUNTEST %d TCK;\n", usToggle);
#endif /* DEBUG */
break;
case ENDLOOP:
/*
* Exit point from processing loops.
*/
usContinue = 0;
break;
case COMMENT:
/*
* Display comment.
*/
ispVMComment((unsigned short) ispVMDataSize());
break;
case ispEN:
ucState = GetByte();
if ((ucState == ON) || (ucState == 0x01))
writePort(g_ucPinENABLE, 0x01);
else
writePort(g_ucPinENABLE, 0x00);
ispVMDelay(1);
break;
case TRST:
if (GetByte() == 0x01)
writePort(g_ucPinTRST, 0x01);
else
writePort(g_ucPinTRST, 0x00);
ispVMDelay(1);
break;
default:
/*
* Invalid opcode encountered.
*/
debug("\nINVALID OPCODE: 0x%.2X\n", cOpcode);
return VME_INVALID_FILE;
}
}
if (cRetCode >= 0) {
/*
* Break if intelligent programming is successful.
*/
break;
}
}
/*
* If HEAP_IN flag was temporarily disabled,
* re-enable it before exiting
*/
if (cRepeatHeap) {
g_usDataType |= HEAP_IN;
}
/*
* Set the data type register to not get data from the
* intelligent data buffer.
*/
g_usDataType &= ~LHEAP_IN;
return cRetCode;
}
/*
*
* ispVMClocks
*
* Applies the specified number of pulses to TCK.
*
*/
void ispVMClocks(unsigned short Clocks)
{
unsigned short iClockIndex = 0;
for (iClockIndex = 0; iClockIndex < Clocks; iClockIndex++) {
sclock();
}
}
/*
*
* ispVMBypass
*
* This procedure takes care of the HIR, HDR, TIR, TDR for the
* purpose of putting the other devices into Bypass mode. The
* current state is checked to find out if it is at DRPAUSE or
* IRPAUSE. If it is at DRPAUSE, perform bypass register scan.
* If it is at IRPAUSE, scan into instruction registers the bypass
* instruction.
*
*/
void ispVMBypass(signed char ScanType, unsigned short Bits)
{
/* 09/11/07 NN added local variables initialization */
unsigned short iIndex = 0;
unsigned short iSourceIndex = 0;
unsigned char cBitState = 0;
unsigned char cCurByte = 0;
unsigned char *pcSource = NULL;
if (Bits <= 0) {
return;
}
switch (ScanType) {
case HIR:
pcSource = g_pucHIRData;
break;
case TIR:
pcSource = g_pucTIRData;
break;
case HDR:
pcSource = g_pucHDRData;
break;
case TDR:
pcSource = g_pucTDRData;
break;
default:
break;
}
iSourceIndex = 0;
cBitState = 0;
for (iIndex = 0; iIndex < Bits - 1; iIndex++) {
/* Scan instruction or bypass register */
if (iIndex % 8 == 0) {
cCurByte = pcSource[iSourceIndex++];
}
cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
? 0x01 : 0x00);
writePort(g_ucPinTDI, cBitState);
sclock();
}
if (iIndex % 8 == 0) {
cCurByte = pcSource[iSourceIndex++];
}
cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
? 0x01 : 0x00);
writePort(g_ucPinTDI, cBitState);
}
/*
*
* ispVMStateMachine
*
* This procedure steps all devices in the daisy chain from a given
* JTAG state to the next desirable state. If the next state is TLR,
* the JTAG state machine is brute forced into TLR by driving TMS
* high and pulse TCK 6 times.
*
*/
void ispVMStateMachine(signed char cNextJTAGState)
{
/* 09/11/07 NN added local variables initialization */
signed char cPathIndex = 0;
signed char cStateIndex = 0;
if ((g_cCurrentJTAGState == cNextJTAGState) &&
(cNextJTAGState != RESET)) {
return;
}
for (cStateIndex = 0; cStateIndex < 25; cStateIndex++) {
if ((g_cCurrentJTAGState ==
g_JTAGTransistions[cStateIndex].CurState) &&
(cNextJTAGState ==
g_JTAGTransistions[cStateIndex].NextState)) {
break;
}
}
g_cCurrentJTAGState = cNextJTAGState;
for (cPathIndex = 0;
cPathIndex < g_JTAGTransistions[cStateIndex].Pulses;
cPathIndex++) {
if ((g_JTAGTransistions[cStateIndex].Pattern << cPathIndex)
& 0x80) {
writePort(g_ucPinTMS, (unsigned char) 0x01);
} else {
writePort(g_ucPinTMS, (unsigned char) 0x00);
}
sclock();
}
writePort(g_ucPinTDI, 0x00);
writePort(g_ucPinTMS, 0x00);
}
/*
*
* ispVMStart
*
* Enable the port to the device and set the state to RESET (TLR).
*
*/
void ispVMStart()
{
#ifdef DEBUG
printf("// ISPVM EMBEDDED ADDED\n");
printf("STATE RESET;\n");
#endif
g_usFlowControl = 0;
g_usDataType = g_uiChecksumIndex = g_cCurrentJTAGState = 0;
g_usHeadDR = g_usHeadIR = g_usTailDR = g_usTailIR = 0;
g_usMaxSize = g_usShiftValue = g_usRepeatLoops = 0;
g_usTDOSize = g_usMASKSize = g_usTDISize = 0;
g_usDMASKSize = g_usLCOUNTSize = g_usHDRSize = 0;
g_usTDRSize = g_usHIRSize = g_usTIRSize = g_usHeapSize = 0;
g_pLVDSList = NULL;
g_usLVDSPairCount = 0;
previous_size = 0;
ispVMStateMachine(RESET); /*step devices to RESET state*/
}
/*
*
* ispVMEnd
*
* Set the state of devices to RESET to enable the devices and disable
* the port.
*
*/
void ispVMEnd()
{
#ifdef DEBUG
printf("// ISPVM EMBEDDED ADDED\n");
printf("STATE RESET;\n");
printf("RUNTEST 1.00E-001 SEC;\n");
#endif
ispVMStateMachine(RESET); /*step devices to RESET state */
ispVMDelay(1000); /*wake up devices*/
}
/*
*
* ispVMSend
*
* Send the TDI data stream to devices. The data stream can be
* instructions or data.
*
*/
signed char ispVMSend(unsigned short a_usiDataSize)
{
/* 09/11/07 NN added local variables initialization */
unsigned short iIndex = 0;
unsigned short iInDataIndex = 0;
unsigned char cCurByte = 0;
unsigned char cBitState = 0;
for (iIndex = 0; iIndex < a_usiDataSize - 1; iIndex++) {
if (iIndex % 8 == 0) {
cCurByte = g_pucInData[iInDataIndex++];
}
cBitState = (unsigned char)(((cCurByte << iIndex % 8) & 0x80)
? 0x01 : 0x00);
writePort(g_ucPinTDI, cBitState);
sclock();
}
if (iIndex % 8 == 0) {
/* Take care of the last bit */
cCurByte = g_pucInData[iInDataIndex];
}
cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
? 0x01 : 0x00);
writePort(g_ucPinTDI, cBitState);
if (g_usFlowControl & CASCADE) {
/*1/15/04 Clock in last bit for the first n-1 cascaded frames */
sclock();
}
return 0;
}
/*
*
* ispVMRead
*
* Read the data stream from devices and verify.
*
*/
signed char ispVMRead(unsigned short a_usiDataSize)
{
/* 09/11/07 NN added local variables initialization */
unsigned short usDataSizeIndex = 0;
unsigned short usErrorCount = 0;
unsigned short usLastBitIndex = 0;
unsigned char cDataByte = 0;
unsigned char cMaskByte = 0;
unsigned char cInDataByte = 0;
unsigned char cCurBit = 0;
unsigned char cByteIndex = 0;
unsigned short usBufferIndex = 0;
unsigned char ucDisplayByte = 0x00;
unsigned char ucDisplayFlag = 0x01;
char StrChecksum[256] = {0};
unsigned char g_usCalculateChecksum = 0x00;
/* 09/11/07 NN Type cast mismatch variables */
usLastBitIndex = (unsigned short)(a_usiDataSize - 1);
#ifndef DEBUG
/*
* If mask is not all zeros, then set the display flag to 0x00,
* otherwise it shall be set to 0x01 to indicate that data read
* from the device shall be displayed. If DEBUG is defined,
* always display data.
*/
for (usDataSizeIndex = 0; usDataSizeIndex < (a_usiDataSize + 7) / 8;
usDataSizeIndex++) {
if (g_usDataType & MASK_DATA) {
if (g_pucOutMaskData[usDataSizeIndex] != 0x00) {
ucDisplayFlag = 0x00;
break;
}
} else if (g_usDataType & CMASK_DATA) {
g_usCalculateChecksum = 0x01;
ucDisplayFlag = 0x00;
break;
} else {
ucDisplayFlag = 0x00;
break;
}
}
#endif /* DEBUG */
/*
*
* Begin shifting data in and out of the device.
*
**/
for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize;
usDataSizeIndex++) {
if (cByteIndex == 0) {
/*
* Grab byte from TDO buffer.
*/
if (g_usDataType & TDO_DATA) {
cDataByte = g_pucOutData[usBufferIndex];
}
/*
* Grab byte from MASK buffer.
*/
if (g_usDataType & MASK_DATA) {
cMaskByte = g_pucOutMaskData[usBufferIndex];
} else {
cMaskByte = 0xFF;
}
/*
* Grab byte from CMASK buffer.
*/
if (g_usDataType & CMASK_DATA) {
cMaskByte = 0x00;
g_usCalculateChecksum = 0x01;
}
/*
* Grab byte from TDI buffer.
*/
if (g_usDataType & TDI_DATA) {
cInDataByte = g_pucInData[usBufferIndex];
}
usBufferIndex++;
}
cCurBit = readPort();
if (ucDisplayFlag) {
ucDisplayByte <<= 1;
ucDisplayByte |= cCurBit;
}
/*
* Check if data read from port matches with expected TDO.
*/
if (g_usDataType & TDO_DATA) {
/* 08/28/08 NN Added Calculate checksum support. */
if (g_usCalculateChecksum) {
if (cCurBit == 0x01)
g_usChecksum +=
(1 << (g_uiChecksumIndex % 8));
g_uiChecksumIndex++;
} else {
if ((((cMaskByte << cByteIndex) & 0x80)
? 0x01 : 0x00)) {
if (cCurBit != (unsigned char)
(((cDataByte << cByteIndex) & 0x80)
? 0x01 : 0x00)) {
usErrorCount++;
}
}
}
}
/*
* Write TDI data to the port.
*/
writePort(g_ucPinTDI,
(unsigned char)(((cInDataByte << cByteIndex) & 0x80)
? 0x01 : 0x00));
if (usDataSizeIndex < usLastBitIndex) {
/*
* Clock data out from the data shift register.
*/
sclock();
} else if (g_usFlowControl & CASCADE) {
/*
* Clock in last bit for the first N - 1 cascaded frames
*/
sclock();
}
/*
* Increment the byte index. If it exceeds 7, then reset it back
* to zero.
*/
cByteIndex++;
if (cByteIndex >= 8) {
if (ucDisplayFlag) {
/*
* Store displayed data in the TDO buffer. By reusing
* the TDO buffer to store displayed data, there is no
* need to allocate a buffer simply to hold display
* data. This will not cause any false verification
* errors because the true TDO byte has already
* been consumed.
*/
g_pucOutData[usBufferIndex - 1] = ucDisplayByte;
ucDisplayByte = 0;
}
cByteIndex = 0;
}
/* 09/12/07 Nguyen changed to display the 1 bit expected data */
else if (a_usiDataSize == 1) {
if (ucDisplayFlag) {
/*
* Store displayed data in the TDO buffer.
* By reusing the TDO buffer to store displayed
* data, there is no need to allocate
* a buffer simply to hold display data. This
* will not cause any false verification errors
* because the true TDO byte has already
* been consumed.
*/
/*
* Flip ucDisplayByte and store it in cDataByte.
*/
cDataByte = 0x00;
for (usBufferIndex = 0; usBufferIndex < 8;
usBufferIndex++) {
cDataByte <<= 1;
if (ucDisplayByte & 0x01) {
cDataByte |= 0x01;
}
ucDisplayByte >>= 1;
}
g_pucOutData[0] = cDataByte;
ucDisplayByte = 0;
}
cByteIndex = 0;
}
}
if (ucDisplayFlag) {
#ifdef DEBUG
debug("RECEIVED TDO (");
#else
vme_out_string("Display Data: 0x");
#endif /* DEBUG */
/* 09/11/07 NN Type cast mismatch variables */
for (usDataSizeIndex = (unsigned short)
((a_usiDataSize + 7) / 8);
usDataSizeIndex > 0 ; usDataSizeIndex--) {
cMaskByte = g_pucOutData[usDataSizeIndex - 1];
cDataByte = 0x00;
/*
* Flip cMaskByte and store it in cDataByte.
*/
for (usBufferIndex = 0; usBufferIndex < 8;
usBufferIndex++) {
cDataByte <<= 1;
if (cMaskByte & 0x01) {
cDataByte |= 0x01;
}
cMaskByte >>= 1;
}
#ifdef DEBUG
printf("%.2X", cDataByte);
if ((((a_usiDataSize + 7) / 8) - usDataSizeIndex)
% 40 == 39) {
printf("\n\t\t");
}
#else
vme_out_hex(cDataByte);
#endif /* DEBUG */
}
#ifdef DEBUG
printf(")\n\n");
#else
vme_out_string("\n\n");
#endif /* DEBUG */
/* 09/02/08 Nguyen changed to display the data Checksum */
if (g_usChecksum != 0) {
g_usChecksum &= 0xFFFF;
sprintf(StrChecksum, "Data Checksum: %.4lX\n\n",
g_usChecksum);
vme_out_string(StrChecksum);
g_usChecksum = 0;
}
}
if (usErrorCount > 0) {
if (g_usFlowControl & VERIFYUES) {
vme_out_string(
"USERCODE verification failed. "
"Continue programming......\n\n");
g_usFlowControl &= ~(VERIFYUES);
return 0;
} else {
#ifdef DEBUG
printf("TOTAL ERRORS: %d\n", usErrorCount);
#endif /* DEBUG */
return VME_VERIFICATION_FAILURE;
}
} else {
if (g_usFlowControl & VERIFYUES) {
vme_out_string("USERCODE verification passed. "
"Programming aborted.\n\n");
g_usFlowControl &= ~(VERIFYUES);
return 1;
} else {
return 0;
}
}
}
/*
*
* ispVMReadandSave
*
* Support dynamic I/O.
*
*/
signed char ispVMReadandSave(unsigned short int a_usiDataSize)
{
/* 09/11/07 NN added local variables initialization */
unsigned short int usDataSizeIndex = 0;
unsigned short int usLastBitIndex = 0;
unsigned short int usBufferIndex = 0;
unsigned short int usOutBitIndex = 0;
unsigned short int usLVDSIndex = 0;
unsigned char cDataByte = 0;
unsigned char cDMASKByte = 0;
unsigned char cInDataByte = 0;
unsigned char cCurBit = 0;
unsigned char cByteIndex = 0;
signed char cLVDSByteIndex = 0;
/* 09/11/07 NN Type cast mismatch variables */
usLastBitIndex = (unsigned short) (a_usiDataSize - 1);
/*
*
* Iterate through the data bits.
*
*/
for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize;
usDataSizeIndex++) {
if (cByteIndex == 0) {
/*
* Grab byte from DMASK buffer.
*/
if (g_usDataType & DMASK_DATA) {
cDMASKByte = g_pucOutDMaskData[usBufferIndex];
} else {
cDMASKByte = 0x00;
}
/*
* Grab byte from TDI buffer.
*/
if (g_usDataType & TDI_DATA) {
cInDataByte = g_pucInData[usBufferIndex];
}
usBufferIndex++;
}
cCurBit = readPort();
cDataByte = (unsigned char)(((cInDataByte << cByteIndex) & 0x80)
? 0x01 : 0x00);
/*
* Initialize the byte to be zero.
*/
if (usOutBitIndex % 8 == 0) {
g_pucOutData[usOutBitIndex / 8] = 0x00;
}
/*
* Use TDI, DMASK, and device TDO to create new TDI (actually
* stored in g_pucOutData).
*/
if ((((cDMASKByte << cByteIndex) & 0x80) ? 0x01 : 0x00)) {
if (g_pLVDSList) {
for (usLVDSIndex = 0;
usLVDSIndex < g_usLVDSPairCount;
usLVDSIndex++) {
if (g_pLVDSList[usLVDSIndex].
usNegativeIndex ==
usDataSizeIndex) {
g_pLVDSList[usLVDSIndex].
ucUpdate = 0x01;
break;
}
}
}
/*
* DMASK bit is 1, use TDI.
*/
g_pucOutData[usOutBitIndex / 8] |= (unsigned char)
(((cDataByte & 0x1) ? 0x01 : 0x00) <<
(7 - usOutBitIndex % 8));
} else {
/*
* DMASK bit is 0, use device TDO.
*/
g_pucOutData[usOutBitIndex / 8] |= (unsigned char)
(((cCurBit & 0x1) ? 0x01 : 0x00) <<
(7 - usOutBitIndex % 8));
}
/*
* Shift in TDI in order to get TDO out.
*/
usOutBitIndex++;
writePort(g_ucPinTDI, cDataByte);
if (usDataSizeIndex < usLastBitIndex) {
sclock();
}
/*
* Increment the byte index. If it exceeds 7, then reset it back
* to zero.
*/
cByteIndex++;
if (cByteIndex >= 8) {
cByteIndex = 0;
}
}
/*
* If g_pLVDSList exists and pairs need updating, then update
* the negative-pair to receive the flipped positive-pair value.
*/
if (g_pLVDSList) {
for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount;
usLVDSIndex++) {
if (g_pLVDSList[usLVDSIndex].ucUpdate) {
/*
* Read the positive value and flip it.
*/
cDataByte = (unsigned char)
(((g_pucOutData[g_pLVDSList[usLVDSIndex].
usPositiveIndex / 8]
<< (g_pLVDSList[usLVDSIndex].
usPositiveIndex % 8)) & 0x80) ?
0x01 : 0x00);
/* 09/11/07 NN Type cast mismatch variables */
cDataByte = (unsigned char) (!cDataByte);
/*
* Get the byte that needs modification.
*/
cInDataByte =
g_pucOutData[g_pLVDSList[usLVDSIndex].
usNegativeIndex / 8];
if (cDataByte) {
/*
* Copy over the current byte and
* set the negative bit to 1.
*/
cDataByte = 0x00;
for (cLVDSByteIndex = 7;
cLVDSByteIndex >= 0;
cLVDSByteIndex--) {
cDataByte <<= 1;
if (7 -
(g_pLVDSList[usLVDSIndex].
usNegativeIndex % 8) ==
cLVDSByteIndex) {
/*
* Set negative bit to 1
*/
cDataByte |= 0x01;
} else if (cInDataByte & 0x80) {
cDataByte |= 0x01;
}
cInDataByte <<= 1;
}
/*
* Store the modified byte.
*/
g_pucOutData[g_pLVDSList[usLVDSIndex].
usNegativeIndex / 8] = cDataByte;
} else {
/*
* Copy over the current byte and set
* the negative bit to 0.
*/
cDataByte = 0x00;
for (cLVDSByteIndex = 7;
cLVDSByteIndex >= 0;
cLVDSByteIndex--) {
cDataByte <<= 1;
if (7 -
(g_pLVDSList[usLVDSIndex].
usNegativeIndex % 8) ==
cLVDSByteIndex) {
/*
* Set negative bit to 0
*/
cDataByte |= 0x00;
} else if (cInDataByte & 0x80) {
cDataByte |= 0x01;
}
cInDataByte <<= 1;
}
/*
* Store the modified byte.
*/
g_pucOutData[g_pLVDSList[usLVDSIndex].
usNegativeIndex / 8] = cDataByte;
}
break;
}
}
}
return 0;
}
signed char ispVMProcessLVDS(unsigned short a_usLVDSCount)
{
unsigned short usLVDSIndex = 0;
/*
* Allocate memory to hold LVDS pairs.
*/
ispVMMemManager(LVDS, a_usLVDSCount);
g_usLVDSPairCount = a_usLVDSCount;
#ifdef DEBUG
printf("LVDS %d (", a_usLVDSCount);
#endif /* DEBUG */
/*
* Iterate through each given LVDS pair.
*/
for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount; usLVDSIndex++) {
/*
* Assign the positive and negative indices of the LVDS pair.
*/
/* 09/11/07 NN Type cast mismatch variables */
g_pLVDSList[usLVDSIndex].usPositiveIndex =
(unsigned short) ispVMDataSize();
/* 09/11/07 NN Type cast mismatch variables */
g_pLVDSList[usLVDSIndex].usNegativeIndex =
(unsigned short)ispVMDataSize();
#ifdef DEBUG
if (usLVDSIndex < g_usLVDSPairCount - 1) {
printf("%d:%d, ",
g_pLVDSList[usLVDSIndex].usPositiveIndex,
g_pLVDSList[usLVDSIndex].usNegativeIndex);
} else {
printf("%d:%d",
g_pLVDSList[usLVDSIndex].usPositiveIndex,
g_pLVDSList[usLVDSIndex].usNegativeIndex);
}
#endif /* DEBUG */
}
#ifdef DEBUG
printf(");\n", a_usLVDSCount);
#endif /* DEBUG */
return 0;
}