u-boot/drivers/mmc/fsl_esdhc_imx.c

1688 lines
44 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2007, 2010-2011 Freescale Semiconductor, Inc
* Copyright 2019, 2021 NXP
* Andy Fleming
* Yangbo Lu <yangbo.lu@nxp.com>
*
* Based vaguely on the pxa mmc code:
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <clk.h>
#include <cpu_func.h>
#include <errno.h>
#include <hwconfig.h>
#include <log.h>
#include <mmc.h>
#include <part.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/printk.h>
#include <power/regulator.h>
#include <malloc.h>
#include <fsl_esdhc_imx.h>
#include <fdt_support.h>
#include <asm/io.h>
#include <dm.h>
#include <asm-generic/gpio.h>
#include <dm/pinctrl.h>
#include <dt-structs.h>
#include <mapmem.h>
#include <dm/ofnode.h>
#include <linux/iopoll.h>
#include <linux/dma-mapping.h>
#ifndef ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE
#ifdef CONFIG_FSL_USDHC
#define ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE 1
#endif
#endif
DECLARE_GLOBAL_DATA_PTR;
#define SDHCI_IRQ_EN_BITS (IRQSTATEN_CC | IRQSTATEN_TC | \
IRQSTATEN_CINT | \
IRQSTATEN_CTOE | IRQSTATEN_CCE | IRQSTATEN_CEBE | \
IRQSTATEN_CIE | IRQSTATEN_DTOE | IRQSTATEN_DCE | \
IRQSTATEN_DEBE | IRQSTATEN_BRR | IRQSTATEN_BWR | \
IRQSTATEN_DINT)
#define MAX_TUNING_LOOP 40
struct fsl_esdhc {
uint dsaddr; /* SDMA system address register */
uint blkattr; /* Block attributes register */
uint cmdarg; /* Command argument register */
uint xfertyp; /* Transfer type register */
uint cmdrsp0; /* Command response 0 register */
uint cmdrsp1; /* Command response 1 register */
uint cmdrsp2; /* Command response 2 register */
uint cmdrsp3; /* Command response 3 register */
uint datport; /* Buffer data port register */
uint prsstat; /* Present state register */
uint proctl; /* Protocol control register */
uint sysctl; /* System Control Register */
uint irqstat; /* Interrupt status register */
uint irqstaten; /* Interrupt status enable register */
uint irqsigen; /* Interrupt signal enable register */
uint autoc12err; /* Auto CMD error status register */
uint hostcapblt; /* Host controller capabilities register */
uint wml; /* Watermark level register */
uint mixctrl; /* For USDHC */
char reserved1[4]; /* reserved */
uint fevt; /* Force event register */
uint admaes; /* ADMA error status register */
uint adsaddr; /* ADMA system address register */
char reserved2[4];
uint dllctrl;
uint dllstat;
uint clktunectrlstatus;
char reserved3[4];
uint strobe_dllctrl;
uint strobe_dllstat;
char reserved4[72];
uint vendorspec;
uint mmcboot;
uint vendorspec2;
uint tuning_ctrl; /* on i.MX6/7/8/RT */
char reserved5[44];
uint hostver; /* Host controller version register */
char reserved6[4]; /* reserved */
uint dmaerraddr; /* DMA error address register */
char reserved7[4]; /* reserved */
uint dmaerrattr; /* DMA error attribute register */
char reserved8[4]; /* reserved */
uint hostcapblt2; /* Host controller capabilities register 2 */
char reserved9[8]; /* reserved */
uint tcr; /* Tuning control register */
char reserved10[28]; /* reserved */
uint sddirctl; /* SD direction control register */
char reserved11[712];/* reserved */
uint scr; /* eSDHC control register */
};
struct fsl_esdhc_plat {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
/* Put this first since driver model will copy the data here */
struct dtd_fsl_esdhc dtplat;
#endif
struct mmc_config cfg;
struct mmc mmc;
};
struct esdhc_soc_data {
u32 flags;
};
/**
* struct fsl_esdhc_priv
*
* @esdhc_regs: registers of the sdhc controller
* @sdhc_clk: Current clk of the sdhc controller
* @cfg: mmc config
* @mmc: mmc
* Following is used when Driver Model is enabled for MMC
* @dev: pointer for the device
* @broken_cd: 0: use GPIO for card detect; 1: Do not use GPIO for card detect
* @wp_enable: 1: enable checking wp; 0: no check
* @vs18_enable: 1: use 1.8V voltage; 0: use 3.3V
* @flags: ESDHC_FLAG_xx in include/fsl_esdhc_imx.h
* @caps: controller capabilities
* @tuning_step: tuning step setting in tuning_ctrl register
* @start_tuning_tap: the start point for tuning in tuning_ctrl register
* @strobe_dll_delay_target: settings in strobe_dllctrl
* @signal_voltage: indicating the current voltage
* @signal_voltage_switch_extra_delay_ms: extra delay for IO voltage switch
* @cd_gpio: gpio for card detection
* @wp_gpio: gpio for write protection
*/
struct fsl_esdhc_priv {
struct fsl_esdhc *esdhc_regs;
unsigned int sdhc_clk;
struct clk per_clk;
unsigned int clock;
unsigned int mode;
#if !CONFIG_IS_ENABLED(DM_MMC)
struct mmc *mmc;
#endif
struct udevice *dev;
int broken_cd;
int wp_enable;
int vs18_enable;
u32 flags;
u32 caps;
u32 tuning_step;
u32 tuning_start_tap;
u32 strobe_dll_delay_target;
u32 signal_voltage;
u32 signal_voltage_switch_extra_delay_ms;
struct udevice *vqmmc_dev;
struct udevice *vmmc_dev;
#if CONFIG_IS_ENABLED(DM_GPIO)
struct gpio_desc cd_gpio;
struct gpio_desc wp_gpio;
#endif
dma_addr_t dma_addr;
};
/* Return the XFERTYP flags for a given command and data packet */
static uint esdhc_xfertyp(struct mmc_cmd *cmd, struct mmc_data *data)
{
uint xfertyp = 0;
if (data) {
xfertyp |= XFERTYP_DPSEL;
if (!IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO) &&
cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK &&
cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK_HS200)
xfertyp |= XFERTYP_DMAEN;
if (data->blocks > 1) {
xfertyp |= XFERTYP_MSBSEL;
xfertyp |= XFERTYP_BCEN;
if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC111))
xfertyp |= XFERTYP_AC12EN;
}
if (data->flags & MMC_DATA_READ)
xfertyp |= XFERTYP_DTDSEL;
}
if (cmd->resp_type & MMC_RSP_CRC)
xfertyp |= XFERTYP_CCCEN;
if (cmd->resp_type & MMC_RSP_OPCODE)
xfertyp |= XFERTYP_CICEN;
if (cmd->resp_type & MMC_RSP_136)
xfertyp |= XFERTYP_RSPTYP_136;
else if (cmd->resp_type & MMC_RSP_BUSY)
xfertyp |= XFERTYP_RSPTYP_48_BUSY;
else if (cmd->resp_type & MMC_RSP_PRESENT)
xfertyp |= XFERTYP_RSPTYP_48;
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
xfertyp |= XFERTYP_CMDTYP_ABORT;
return XFERTYP_CMD(cmd->cmdidx) | xfertyp;
}
/*
* PIO Read/Write Mode reduce the performace as DMA is not used in this mode.
*/
static void esdhc_pio_read_write(struct fsl_esdhc_priv *priv,
struct mmc_data *data)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
uint blocks;
char *buffer;
uint databuf;
uint size;
uint irqstat;
ulong start;
if (data->flags & MMC_DATA_READ) {
blocks = data->blocks;
buffer = data->dest;
while (blocks) {
start = get_timer(0);
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BREN)) {
if (get_timer(start) > PIO_TIMEOUT) {
printf("\nData Read Failed in PIO Mode.");
return;
}
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
irqstat = esdhc_read32(&regs->irqstat);
databuf = in_le32(&regs->datport);
*((uint *)buffer) = databuf;
buffer += 4;
size -= 4;
}
blocks--;
}
} else {
blocks = data->blocks;
buffer = (char *)data->src;
while (blocks) {
start = get_timer(0);
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BWEN)) {
if (get_timer(start) > PIO_TIMEOUT) {
printf("\nData Write Failed in PIO Mode.");
return;
}
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
databuf = *((uint *)buffer);
buffer += 4;
size -= 4;
irqstat = esdhc_read32(&regs->irqstat);
out_le32(&regs->datport, databuf);
}
blocks--;
}
}
}
static void esdhc_setup_watermark_level(struct fsl_esdhc_priv *priv,
struct mmc_data *data)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
uint wml_value = data->blocksize / 4;
if (data->flags & MMC_DATA_READ) {
if (wml_value > WML_RD_WML_MAX)
wml_value = WML_RD_WML_MAX_VAL;
esdhc_clrsetbits32(&regs->wml, WML_RD_WML_MASK, wml_value);
} else {
if (wml_value > WML_WR_WML_MAX)
wml_value = WML_WR_WML_MAX_VAL;
esdhc_clrsetbits32(&regs->wml, WML_WR_WML_MASK,
wml_value << 16);
}
}
static void esdhc_setup_dma(struct fsl_esdhc_priv *priv, struct mmc_data *data)
{
uint trans_bytes = data->blocksize * data->blocks;
struct fsl_esdhc *regs = priv->esdhc_regs;
void *buf;
if (data->flags & MMC_DATA_WRITE)
buf = (void *)data->src;
else
buf = data->dest;
priv->dma_addr = dma_map_single(buf, trans_bytes,
mmc_get_dma_dir(data));
if (upper_32_bits(priv->dma_addr))
printf("Cannot use 64 bit addresses with SDMA\n");
esdhc_write32(&regs->dsaddr, lower_32_bits(priv->dma_addr));
esdhc_write32(&regs->blkattr, data->blocks << 16 | data->blocksize);
}
static int esdhc_setup_data(struct fsl_esdhc_priv *priv, struct mmc *mmc,
struct mmc_data *data)
{
int timeout;
bool is_write = data->flags & MMC_DATA_WRITE;
struct fsl_esdhc *regs = priv->esdhc_regs;
if (is_write) {
if (priv->wp_enable && !(esdhc_read32(&regs->prsstat) & PRSSTAT_WPSPL)) {
printf("Cannot write to locked SD card.\n");
return -EINVAL;
} else {
#if CONFIG_IS_ENABLED(DM_GPIO)
if (dm_gpio_is_valid(&priv->wp_gpio) &&
dm_gpio_get_value(&priv->wp_gpio)) {
printf("Cannot write to locked SD card.\n");
return -EINVAL;
}
#endif
}
}
esdhc_setup_watermark_level(priv, data);
if (!IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO))
esdhc_setup_dma(priv, data);
/* Calculate the timeout period for data transactions */
/*
* 1)Timeout period = (2^(timeout+13)) SD Clock cycles
* 2)Timeout period should be minimum 0.250sec as per SD Card spec
* So, Number of SD Clock cycles for 0.25sec should be minimum
* (SD Clock/sec * 0.25 sec) SD Clock cycles
* = (mmc->clock * 1/4) SD Clock cycles
* As 1) >= 2)
* => (2^(timeout+13)) >= mmc->clock * 1/4
* Taking log2 both the sides
* => timeout + 13 >= log2(mmc->clock/4)
* Rounding up to next power of 2
* => timeout + 13 = log2(mmc->clock/4) + 1
* => timeout + 13 = fls(mmc->clock/4)
*
* However, the MMC spec "It is strongly recommended for hosts to
* implement more than 500ms timeout value even if the card
* indicates the 250ms maximum busy length." Even the previous
* value of 300ms is known to be insufficient for some cards.
* So, we use
* => timeout + 13 = fls(mmc->clock/2)
*/
timeout = fls(mmc->clock/2);
timeout -= 13;
if (timeout > 14)
timeout = 14;
if (timeout < 0)
timeout = 0;
if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC_A001) &&
(timeout == 4 || timeout == 8 || timeout == 12))
timeout++;
if (IS_ENABLED(ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE))
timeout = 0xE;
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, timeout << 16);
return 0;
}
#if IS_ENABLED(CONFIG_MCF5441x)
/*
* Swaps 32-bit words to little-endian byte order.
*/
static inline void sd_swap_dma_buff(struct mmc_data *data)
{
int i, size = data->blocksize >> 2;
u32 *buffer = (u32 *)data->dest;
u32 sw;
while (data->blocks--) {
for (i = 0; i < size; i++) {
sw = __sw32(*buffer);
*buffer++ = sw;
}
}
}
#else
static inline void sd_swap_dma_buff(struct mmc_data *data)
{
return;
}
#endif
/*
* Sends a command out on the bus. Takes the mmc pointer,
* a command pointer, and an optional data pointer.
*/
static int esdhc_send_cmd_common(struct fsl_esdhc_priv *priv, struct mmc *mmc,
struct mmc_cmd *cmd, struct mmc_data *data)
{
int err = 0;
uint xfertyp;
uint irqstat;
u32 flags = IRQSTAT_CC | IRQSTAT_CTOE;
struct fsl_esdhc *regs = priv->esdhc_regs;
unsigned long start;
if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC111) &&
cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
return 0;
esdhc_write32(&regs->irqstat, -1);
sync();
/* Wait for the bus to be idle */
while ((esdhc_read32(&regs->prsstat) & PRSSTAT_CICHB) ||
(esdhc_read32(&regs->prsstat) & PRSSTAT_CIDHB))
;
while (esdhc_read32(&regs->prsstat) & PRSSTAT_DLA)
;
/* Set up for a data transfer if we have one */
if (data) {
err = esdhc_setup_data(priv, mmc, data);
if(err)
return err;
}
/* Figure out the transfer arguments */
xfertyp = esdhc_xfertyp(cmd, data);
/* Mask all irqs */
esdhc_write32(&regs->irqsigen, 0);
/* Send the command */
esdhc_write32(&regs->cmdarg, cmd->cmdarg);
if (IS_ENABLED(CONFIG_FSL_USDHC)) {
u32 mixctrl = esdhc_read32(&regs->mixctrl);
esdhc_write32(&regs->mixctrl,
(mixctrl & 0xFFFFFF80) | (xfertyp & 0x7F)
| (mmc->ddr_mode ? XFERTYP_DDREN : 0));
esdhc_write32(&regs->xfertyp, xfertyp & 0xFFFF0000);
} else {
esdhc_write32(&regs->xfertyp, xfertyp);
}
if ((cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK) ||
(cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200))
flags = IRQSTAT_BRR;
/* Wait for the command to complete */
start = get_timer(0);
while (!(esdhc_read32(&regs->irqstat) & flags)) {
if (get_timer(start) > 1000) {
err = -ETIMEDOUT;
goto out;
}
}
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & CMD_ERR) {
err = -ECOMM;
goto out;
}
if (irqstat & IRQSTAT_CTOE) {
err = -ETIMEDOUT;
goto out;
}
/* Workaround for ESDHC errata ENGcm03648 */
if (!data && (cmd->resp_type & MMC_RSP_BUSY)) {
int timeout = 50000;
/* Poll on DATA0 line for cmd with busy signal for 5000 ms */
while (timeout > 0 && !(esdhc_read32(&regs->prsstat) &
PRSSTAT_DAT0)) {
udelay(100);
timeout--;
}
if (timeout <= 0) {
printf("Timeout waiting for DAT0 to go high!\n");
err = -ETIMEDOUT;
goto out;
}
}
/* Copy the response to the response buffer */
if (cmd->resp_type & MMC_RSP_136) {
u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0;
cmdrsp3 = esdhc_read32(&regs->cmdrsp3);
cmdrsp2 = esdhc_read32(&regs->cmdrsp2);
cmdrsp1 = esdhc_read32(&regs->cmdrsp1);
cmdrsp0 = esdhc_read32(&regs->cmdrsp0);
cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24);
cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24);
cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24);
cmd->response[3] = (cmdrsp0 << 8);
} else
cmd->response[0] = esdhc_read32(&regs->cmdrsp0);
/* Wait until all of the blocks are transferred */
if (data) {
if (IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO)) {
esdhc_pio_read_write(priv, data);
} else {
flags = DATA_COMPLETE;
if (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200)
flags = IRQSTAT_BRR;
do {
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & IRQSTAT_DTOE) {
err = -ETIMEDOUT;
goto out;
}
if (irqstat & DATA_ERR) {
err = -ECOMM;
goto out;
}
} while ((irqstat & flags) != flags);
/*
* Need invalidate the dcache here again to avoid any
* cache-fill during the DMA operations such as the
* speculative pre-fetching etc.
*/
dma_unmap_single(priv->dma_addr,
data->blocks * data->blocksize,
mmc_get_dma_dir(data));
if (IS_ENABLED(CONFIG_MCF5441x) &&
(data->flags & MMC_DATA_READ))
sd_swap_dma_buff(data);
}
}
out:
/* Reset CMD and DATA portions on error */
if (err) {
esdhc_write32(&regs->sysctl, esdhc_read32(&regs->sysctl) |
SYSCTL_RSTC);
while (esdhc_read32(&regs->sysctl) & SYSCTL_RSTC)
;
if (data) {
esdhc_write32(&regs->sysctl,
esdhc_read32(&regs->sysctl) |
SYSCTL_RSTD);
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTD))
;
}
/* If this was CMD11, then notify that power cycle is needed */
if (cmd->cmdidx == SD_CMD_SWITCH_UHS18V)
printf("CMD11 to switch to 1.8V mode failed, card requires power cycle.\n");
}
esdhc_write32(&regs->irqstat, -1);
return err;
}
static void set_sysctl(struct fsl_esdhc_priv *priv, struct mmc *mmc, uint clock)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
int div = 1;
u32 tmp;
int ret, pre_div;
int ddr_pre_div = mmc->ddr_mode ? 2 : 1;
int sdhc_clk = priv->sdhc_clk;
uint clk;
#if IS_ENABLED(CONFIG_MX53)
/* For i.MX53 eSDHCv3, SYSCTL.SDCLKFS may not be set to 0. */
pre_div = (regs == (struct fsl_esdhc *)MMC_SDHC3_BASE_ADDR) ? 2 : 1;
#else
pre_div = 1;
#endif
while (sdhc_clk / (16 * pre_div * ddr_pre_div) > clock && pre_div < 256)
pre_div *= 2;
while (sdhc_clk / (div * pre_div * ddr_pre_div) > clock && div < 16)
div++;
mmc->clock = sdhc_clk / pre_div / div / ddr_pre_div;
pre_div >>= 1;
div -= 1;
clk = (pre_div << 8) | (div << 4);
if (IS_ENABLED(CONFIG_FSL_USDHC))
esdhc_clrbits32(&regs->vendorspec, VENDORSPEC_CKEN);
else
esdhc_clrbits32(&regs->sysctl, SYSCTL_CKEN);
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_CLOCK_MASK, clk);
ret = readx_poll_timeout(esdhc_read32, &regs->prsstat, tmp, tmp & PRSSTAT_SDSTB, 100);
if (ret)
pr_warn("fsl_esdhc_imx: Internal clock never stabilised.\n");
if (IS_ENABLED(CONFIG_FSL_USDHC))
esdhc_setbits32(&regs->vendorspec, VENDORSPEC_PEREN | VENDORSPEC_CKEN);
else
esdhc_setbits32(&regs->sysctl, SYSCTL_PEREN | SYSCTL_CKEN);
priv->clock = clock;
}
#ifdef MMC_SUPPORTS_TUNING
static int esdhc_change_pinstate(struct udevice *dev)
{
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
int ret;
switch (priv->mode) {
case UHS_SDR50:
case UHS_DDR50:
ret = pinctrl_select_state(dev, "state_100mhz");
break;
case UHS_SDR104:
case MMC_HS_200:
case MMC_HS_400:
case MMC_HS_400_ES:
ret = pinctrl_select_state(dev, "state_200mhz");
break;
default:
ret = pinctrl_select_state(dev, "default");
break;
}
if (ret)
printf("%s %d error\n", __func__, priv->mode);
return ret;
}
static void esdhc_reset_tuning(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = dev_get_priv(mmc->dev);
struct fsl_esdhc *regs = priv->esdhc_regs;
if (priv->flags & ESDHC_FLAG_USDHC) {
if (priv->flags & ESDHC_FLAG_STD_TUNING) {
esdhc_clrbits32(&regs->autoc12err,
MIX_CTRL_SMPCLK_SEL |
MIX_CTRL_EXE_TUNE);
}
}
}
static void esdhc_set_strobe_dll(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = dev_get_priv(mmc->dev);
struct fsl_esdhc *regs = priv->esdhc_regs;
u32 val;
if (priv->clock > ESDHC_STROBE_DLL_CLK_FREQ) {
esdhc_write32(&regs->strobe_dllctrl, ESDHC_STROBE_DLL_CTRL_RESET);
/* clear the reset bit on strobe dll before any setting */
esdhc_write32(&regs->strobe_dllctrl, 0);
/*
* enable strobe dll ctrl and adjust the delay target
* for the uSDHC loopback read clock
*/
val = ESDHC_STROBE_DLL_CTRL_ENABLE |
ESDHC_STROBE_DLL_CTRL_SLV_UPDATE_INT_DEFAULT |
(priv->strobe_dll_delay_target <<
ESDHC_STROBE_DLL_CTRL_SLV_DLY_TARGET_SHIFT);
esdhc_write32(&regs->strobe_dllctrl, val);
/* wait 5us to make sure strobe dll status register stable */
mdelay(5);
val = esdhc_read32(&regs->strobe_dllstat);
if (!(val & ESDHC_STROBE_DLL_STS_REF_LOCK))
pr_warn("HS400 strobe DLL status REF not lock!\n");
if (!(val & ESDHC_STROBE_DLL_STS_SLV_LOCK))
pr_warn("HS400 strobe DLL status SLV not lock!\n");
}
}
static int esdhc_set_timing(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = dev_get_priv(mmc->dev);
struct fsl_esdhc *regs = priv->esdhc_regs;
u32 mixctrl;
mixctrl = esdhc_read32(&regs->mixctrl);
mixctrl &= ~(MIX_CTRL_DDREN | MIX_CTRL_HS400_EN);
switch (mmc->selected_mode) {
case MMC_LEGACY:
esdhc_reset_tuning(mmc);
esdhc_write32(&regs->mixctrl, mixctrl);
break;
case MMC_HS_400:
case MMC_HS_400_ES:
mixctrl |= MIX_CTRL_DDREN | MIX_CTRL_HS400_EN;
esdhc_write32(&regs->mixctrl, mixctrl);
break;
case MMC_HS:
case MMC_HS_52:
case MMC_HS_200:
case SD_HS:
case UHS_SDR12:
case UHS_SDR25:
case UHS_SDR50:
case UHS_SDR104:
esdhc_write32(&regs->mixctrl, mixctrl);
break;
case UHS_DDR50:
case MMC_DDR_52:
mixctrl |= MIX_CTRL_DDREN;
esdhc_write32(&regs->mixctrl, mixctrl);
break;
default:
printf("Not supported %d\n", mmc->selected_mode);
return -EINVAL;
}
priv->mode = mmc->selected_mode;
return esdhc_change_pinstate(mmc->dev);
}
static int esdhc_set_voltage(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = dev_get_priv(mmc->dev);
struct fsl_esdhc *regs = priv->esdhc_regs;
int ret;
priv->signal_voltage = mmc->signal_voltage;
switch (mmc->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
if (priv->vs18_enable)
return -ENOTSUPP;
if (CONFIG_IS_ENABLED(DM_REGULATOR) &&
!IS_ERR_OR_NULL(priv->vqmmc_dev)) {
ret = regulator_set_value(priv->vqmmc_dev,
3300000);
if (ret) {
printf("Setting to 3.3V error");
return -EIO;
}
mdelay(5);
}
esdhc_clrbits32(&regs->vendorspec, ESDHC_VENDORSPEC_VSELECT);
if (!(esdhc_read32(&regs->vendorspec) &
ESDHC_VENDORSPEC_VSELECT))
return 0;
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_180:
if (CONFIG_IS_ENABLED(DM_REGULATOR) &&
!IS_ERR_OR_NULL(priv->vqmmc_dev)) {
ret = regulator_set_value(priv->vqmmc_dev,
1800000);
if (ret) {
printf("Setting to 1.8V error");
return -EIO;
}
}
esdhc_setbits32(&regs->vendorspec, ESDHC_VENDORSPEC_VSELECT);
/*
* some board like imx8mm-evk need about 18ms to switch
* the IO voltage from 3.3v to 1.8v, common code only
* delay 10ms, so need to delay extra time to make sure
* the IO voltage change to 1.8v.
*/
if (priv->signal_voltage_switch_extra_delay_ms)
mdelay(priv->signal_voltage_switch_extra_delay_ms);
if (esdhc_read32(&regs->vendorspec) & ESDHC_VENDORSPEC_VSELECT)
return 0;
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_120:
return -ENOTSUPP;
default:
return 0;
}
}
static void esdhc_stop_tuning(struct mmc *mmc)
{
struct mmc_cmd cmd;
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
mmc_send_cmd(mmc, &cmd, NULL);
}
static int fsl_esdhc_execute_tuning(struct udevice *dev, uint32_t opcode)
{
struct fsl_esdhc_plat *plat = dev_get_plat(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
struct fsl_esdhc *regs = priv->esdhc_regs;
struct mmc *mmc = &plat->mmc;
u32 irqstaten = esdhc_read32(&regs->irqstaten);
u32 irqsigen = esdhc_read32(&regs->irqsigen);
mmc: fsl_esdhc_imx: use VENDORSPEC_FRC_SDCLK_ON when necessary After commit f132aab40327 ("Revert "mmc: fsl_esdhc_imx: use VENDORSPEC_FRC_SDCLK_ON to control card clock output""), it involve issue in mmc_switch_voltage(), because of the special design of usdhc. For FSL_USDHC, it do not implement VENDORSPEC_CKEN/PEREN/HCKEN/IPGEN, these are reserved bits(Though RM contain the definition of these bits, but actually internal IC logic do not implement, already confirm with IC team). Instead, use VENDORSPEC_FRC_SDCLK_ON to gate on/off the card clock output. Here is the definition of this bit in RM: [8] FRC_SDCLK_ON Force CLK output active Do not set this bit to 1 unless it is necessary. Also, make sure that this bit is cleared when uSDHC’s clock is about to be changed (frequency change, clock source change, or delay chain tuning). 0b - CLK active or inactive is fully controlled by the hardware. 1b - Force CLK active In default, the FRC_SDCLK_ON is 0. This means, when there is no command or data transfer on bus, hardware will gate off the card clock. But in some case, we need the card clock keep on. Take IO voltage 1.8v switch as example, after IO voltage change to 1.8v, spec require gate off the card clock for 5ms, and gate on the clock back, once detect the card clock on, then the card will draw the dat0 to high immediately. If there is not clock gate off/on behavior, some card will keep the dat0 to low level. This is the reason we fail in mmc_switch_voltage(). To fix this issue, and concern that this is only the fsl usdhc hardware design limitation, set the bit FRC_SDCLK_ON in the beginning of the wait_dat0() and clear it in the end. To make sure the 1.8v IO voltage switch process align with SD specification. For standard tuning process, usdhc specification also require the card clock keep on, so also add these behavior in fsl_esdhc_execute_tuning(). Reviewed-by: Marek Vasut <marex@denx.de> Tested-by: Fabio Estevam <festevam@gmail.com> Signed-off-by: Haibo Chen <haibo.chen@nxp.com> Reviewed-by: Peng Fan <peng.fan@nxp.com> Reviewed-by: Jaehoon Chung <jh80.chung@samsung.com>
2022-02-22 03:28:18 +00:00
int i, err, ret = -ETIMEDOUT;
u32 val, mixctrl, tmp;
/* clock tuning is not needed for upto 52MHz */
if (mmc->clock <= 52000000)
return 0;
mmc: fsl_esdhc_imx: use VENDORSPEC_FRC_SDCLK_ON when necessary After commit f132aab40327 ("Revert "mmc: fsl_esdhc_imx: use VENDORSPEC_FRC_SDCLK_ON to control card clock output""), it involve issue in mmc_switch_voltage(), because of the special design of usdhc. For FSL_USDHC, it do not implement VENDORSPEC_CKEN/PEREN/HCKEN/IPGEN, these are reserved bits(Though RM contain the definition of these bits, but actually internal IC logic do not implement, already confirm with IC team). Instead, use VENDORSPEC_FRC_SDCLK_ON to gate on/off the card clock output. Here is the definition of this bit in RM: [8] FRC_SDCLK_ON Force CLK output active Do not set this bit to 1 unless it is necessary. Also, make sure that this bit is cleared when uSDHC’s clock is about to be changed (frequency change, clock source change, or delay chain tuning). 0b - CLK active or inactive is fully controlled by the hardware. 1b - Force CLK active In default, the FRC_SDCLK_ON is 0. This means, when there is no command or data transfer on bus, hardware will gate off the card clock. But in some case, we need the card clock keep on. Take IO voltage 1.8v switch as example, after IO voltage change to 1.8v, spec require gate off the card clock for 5ms, and gate on the clock back, once detect the card clock on, then the card will draw the dat0 to high immediately. If there is not clock gate off/on behavior, some card will keep the dat0 to low level. This is the reason we fail in mmc_switch_voltage(). To fix this issue, and concern that this is only the fsl usdhc hardware design limitation, set the bit FRC_SDCLK_ON in the beginning of the wait_dat0() and clear it in the end. To make sure the 1.8v IO voltage switch process align with SD specification. For standard tuning process, usdhc specification also require the card clock keep on, so also add these behavior in fsl_esdhc_execute_tuning(). Reviewed-by: Marek Vasut <marex@denx.de> Tested-by: Fabio Estevam <festevam@gmail.com> Signed-off-by: Haibo Chen <haibo.chen@nxp.com> Reviewed-by: Peng Fan <peng.fan@nxp.com> Reviewed-by: Jaehoon Chung <jh80.chung@samsung.com>
2022-02-22 03:28:18 +00:00
/* make sure the card clock keep on */
esdhc_setbits32(&regs->vendorspec, VENDORSPEC_FRC_SDCLK_ON);
/* This is readw/writew SDHCI_HOST_CONTROL2 when tuning */
if (priv->flags & ESDHC_FLAG_STD_TUNING) {
val = esdhc_read32(&regs->autoc12err);
mixctrl = esdhc_read32(&regs->mixctrl);
val &= ~MIX_CTRL_SMPCLK_SEL;
mixctrl &= ~(MIX_CTRL_FBCLK_SEL | MIX_CTRL_AUTO_TUNE_EN);
val |= MIX_CTRL_EXE_TUNE;
mixctrl |= MIX_CTRL_FBCLK_SEL | MIX_CTRL_AUTO_TUNE_EN;
esdhc_write32(&regs->autoc12err, val);
esdhc_write32(&regs->mixctrl, mixctrl);
}
/* sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE); */
mixctrl = esdhc_read32(&regs->mixctrl);
mixctrl = MIX_CTRL_DTDSEL_READ | (mixctrl & ~MIX_CTRL_SDHCI_MASK);
esdhc_write32(&regs->mixctrl, mixctrl);
esdhc_write32(&regs->irqstaten, IRQSTATEN_BRR);
esdhc_write32(&regs->irqsigen, IRQSTATEN_BRR);
/*
* Issue opcode repeatedly till Execute Tuning is set to 0 or the number
* of loops reaches 40 times.
*/
for (i = 0; i < MAX_TUNING_LOOP; i++) {
u32 ctrl;
if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200) {
if (mmc->bus_width == 8)
esdhc_write32(&regs->blkattr, 0x7080);
else if (mmc->bus_width == 4)
esdhc_write32(&regs->blkattr, 0x7040);
} else {
esdhc_write32(&regs->blkattr, 0x7040);
}
/* sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE) */
val = esdhc_read32(&regs->mixctrl);
val = MIX_CTRL_DTDSEL_READ | (val & ~MIX_CTRL_SDHCI_MASK);
esdhc_write32(&regs->mixctrl, val);
/* We are using STD tuning, no need to check return value */
mmc_send_tuning(mmc, opcode, NULL);
ctrl = esdhc_read32(&regs->autoc12err);
if ((!(ctrl & MIX_CTRL_EXE_TUNE)) &&
(ctrl & MIX_CTRL_SMPCLK_SEL)) {
ret = 0;
break;
}
}
esdhc_write32(&regs->irqstaten, irqstaten);
esdhc_write32(&regs->irqsigen, irqsigen);
esdhc_stop_tuning(mmc);
mmc: fsl_esdhc_imx: use VENDORSPEC_FRC_SDCLK_ON when necessary After commit f132aab40327 ("Revert "mmc: fsl_esdhc_imx: use VENDORSPEC_FRC_SDCLK_ON to control card clock output""), it involve issue in mmc_switch_voltage(), because of the special design of usdhc. For FSL_USDHC, it do not implement VENDORSPEC_CKEN/PEREN/HCKEN/IPGEN, these are reserved bits(Though RM contain the definition of these bits, but actually internal IC logic do not implement, already confirm with IC team). Instead, use VENDORSPEC_FRC_SDCLK_ON to gate on/off the card clock output. Here is the definition of this bit in RM: [8] FRC_SDCLK_ON Force CLK output active Do not set this bit to 1 unless it is necessary. Also, make sure that this bit is cleared when uSDHC’s clock is about to be changed (frequency change, clock source change, or delay chain tuning). 0b - CLK active or inactive is fully controlled by the hardware. 1b - Force CLK active In default, the FRC_SDCLK_ON is 0. This means, when there is no command or data transfer on bus, hardware will gate off the card clock. But in some case, we need the card clock keep on. Take IO voltage 1.8v switch as example, after IO voltage change to 1.8v, spec require gate off the card clock for 5ms, and gate on the clock back, once detect the card clock on, then the card will draw the dat0 to high immediately. If there is not clock gate off/on behavior, some card will keep the dat0 to low level. This is the reason we fail in mmc_switch_voltage(). To fix this issue, and concern that this is only the fsl usdhc hardware design limitation, set the bit FRC_SDCLK_ON in the beginning of the wait_dat0() and clear it in the end. To make sure the 1.8v IO voltage switch process align with SD specification. For standard tuning process, usdhc specification also require the card clock keep on, so also add these behavior in fsl_esdhc_execute_tuning(). Reviewed-by: Marek Vasut <marex@denx.de> Tested-by: Fabio Estevam <festevam@gmail.com> Signed-off-by: Haibo Chen <haibo.chen@nxp.com> Reviewed-by: Peng Fan <peng.fan@nxp.com> Reviewed-by: Jaehoon Chung <jh80.chung@samsung.com>
2022-02-22 03:28:18 +00:00
/* change to default setting, let host control the card clock */
esdhc_clrbits32(&regs->vendorspec, VENDORSPEC_FRC_SDCLK_ON);
err = readx_poll_timeout(esdhc_read32, &regs->prsstat, tmp, tmp & PRSSTAT_SDOFF, 100);
if (err)
dev_warn(dev, "card clock not gate off as expect.\n");
return ret;
}
#endif
static int esdhc_set_ios_common(struct fsl_esdhc_priv *priv, struct mmc *mmc)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
int ret __maybe_unused;
u32 clock;
#ifdef MMC_SUPPORTS_TUNING
/*
* call esdhc_set_timing() before update the clock rate,
* This is because current we support DDR and SDR mode,
* Once the DDR_EN bit is set, the card clock will be
* divide by 2 automatically. So need to do this before
* setting clock rate.
*/
if (priv->mode != mmc->selected_mode) {
ret = esdhc_set_timing(mmc);
if (ret) {
printf("esdhc_set_timing error %d\n", ret);
return ret;
}
}
#endif
/* Set the clock speed */
clock = mmc->clock;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
if (priv->clock != clock)
set_sysctl(priv, mmc, clock);
if (mmc->clk_disable) {
if (IS_ENABLED(CONFIG_FSL_USDHC))
esdhc_clrbits32(&regs->vendorspec, VENDORSPEC_CKEN);
else
esdhc_clrbits32(&regs->sysctl, SYSCTL_CKEN);
} else {
if (IS_ENABLED(CONFIG_FSL_USDHC))
esdhc_setbits32(&regs->vendorspec, VENDORSPEC_PEREN |
VENDORSPEC_CKEN);
else
esdhc_setbits32(&regs->sysctl, SYSCTL_PEREN | SYSCTL_CKEN);
}
#ifdef MMC_SUPPORTS_TUNING
/*
* For HS400/HS400ES mode, make sure set the strobe dll in the
* target clock rate. So call esdhc_set_strobe_dll() after the
* clock updated.
*/
if (mmc->selected_mode == MMC_HS_400 || mmc->selected_mode == MMC_HS_400_ES)
esdhc_set_strobe_dll(mmc);
if (priv->signal_voltage != mmc->signal_voltage) {
ret = esdhc_set_voltage(mmc);
if (ret) {
if (ret != -ENOTSUPP)
printf("esdhc_set_voltage error %d\n", ret);
return ret;
}
}
#endif
/* Set the bus width */
esdhc_clrbits32(&regs->proctl, PROCTL_DTW_4 | PROCTL_DTW_8);
if (mmc->bus_width == 4)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_4);
else if (mmc->bus_width == 8)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_8);
return 0;
}
static int esdhc_init_common(struct fsl_esdhc_priv *priv, struct mmc *mmc)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
ulong start;
/* Reset the entire host controller */
esdhc_setbits32(&regs->sysctl, SYSCTL_RSTA);
/* Wait until the controller is available */
start = get_timer(0);
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA)) {
if (get_timer(start) > 1000)
return -ETIMEDOUT;
}
if (IS_ENABLED(CONFIG_FSL_USDHC)) {
/* RSTA doesn't reset MMC_BOOT register, so manually reset it */
esdhc_write32(&regs->mmcboot, 0x0);
/* Reset MIX_CTRL and CLK_TUNE_CTRL_STATUS regs to 0 */
esdhc_write32(&regs->mixctrl, 0x0);
esdhc_write32(&regs->clktunectrlstatus, 0x0);
/* Put VEND_SPEC to default value */
if (priv->vs18_enable)
esdhc_write32(&regs->vendorspec, VENDORSPEC_INIT |
ESDHC_VENDORSPEC_VSELECT);
else
esdhc_write32(&regs->vendorspec, VENDORSPEC_INIT);
/* Disable DLL_CTRL delay line */
esdhc_write32(&regs->dllctrl, 0x0);
}
if (IS_ENABLED(CONFIG_FSL_USDHC))
esdhc_setbits32(&regs->vendorspec,
VENDORSPEC_HCKEN | VENDORSPEC_IPGEN);
else
esdhc_setbits32(&regs->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN);
/* Set the initial clock speed */
set_sysctl(priv, mmc, 400000);
/* Disable the BRR and BWR bits in IRQSTAT */
esdhc_clrbits32(&regs->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR);
/* Put the PROCTL reg back to the default */
if (IS_ENABLED(CONFIG_MCF5441x))
esdhc_write32(&regs->proctl, PROCTL_INIT | PROCTL_D3CD);
else
esdhc_write32(&regs->proctl, PROCTL_INIT);
/* Set timout to the maximum value */
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16);
return 0;
}
static int esdhc_getcd_common(struct fsl_esdhc_priv *priv)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
int timeout = 1000;
if (IS_ENABLED(CONFIG_ESDHC_DETECT_QUIRK))
return 1;
if (CONFIG_IS_ENABLED(DM_MMC)) {
if (priv->broken_cd)
return 1;
#if CONFIG_IS_ENABLED(DM_GPIO)
if (dm_gpio_is_valid(&priv->cd_gpio))
return dm_gpio_get_value(&priv->cd_gpio);
#endif
}
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_CINS) && --timeout)
udelay(1000);
return timeout > 0;
}
static int esdhc_wait_dat0_common(struct fsl_esdhc_priv *priv, int state,
int timeout_us)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
int ret, err;
u32 tmp;
/* make sure the card clock keep on */
esdhc_setbits32(&regs->vendorspec, VENDORSPEC_FRC_SDCLK_ON);
ret = readx_poll_timeout(esdhc_read32, &regs->prsstat, tmp,
!!(tmp & PRSSTAT_DAT0) == !!state,
timeout_us);
/* change to default setting, let host control the card clock */
esdhc_clrbits32(&regs->vendorspec, VENDORSPEC_FRC_SDCLK_ON);
err = readx_poll_timeout(esdhc_read32, &regs->prsstat, tmp, tmp & PRSSTAT_SDOFF, 100);
if (err)
pr_warn("card clock not gate off as expect.\n");
return ret;
}
static int esdhc_reset(struct fsl_esdhc *regs)
{
ulong start;
/* reset the controller */
esdhc_setbits32(&regs->sysctl, SYSCTL_RSTA);
/* hardware clears the bit when it is done */
start = get_timer(0);
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA)) {
if (get_timer(start) > 100) {
printf("MMC/SD: Reset never completed.\n");
return -ETIMEDOUT;
}
}
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
static int esdhc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_getcd_common(priv);
}
static int esdhc_init(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_init_common(priv, mmc);
}
static int esdhc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_send_cmd_common(priv, mmc, cmd, data);
}
static int esdhc_set_ios(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_set_ios_common(priv, mmc);
}
static int esdhc_wait_dat0(struct mmc *mmc, int state, int timeout_us)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_wait_dat0_common(priv, state, timeout_us);
}
static const struct mmc_ops esdhc_ops = {
.getcd = esdhc_getcd,
.init = esdhc_init,
.send_cmd = esdhc_send_cmd,
.set_ios = esdhc_set_ios,
.wait_dat0 = esdhc_wait_dat0,
};
#endif
static int fsl_esdhc_init(struct fsl_esdhc_priv *priv,
struct fsl_esdhc_plat *plat)
{
struct mmc_config *cfg;
struct fsl_esdhc *regs;
u32 caps;
int ret;
if (!priv)
return -EINVAL;
regs = priv->esdhc_regs;
/* First reset the eSDHC controller */
ret = esdhc_reset(regs);
if (ret)
return ret;
/* ColdFire, using SDHC_DATA[3] for card detection */
if (IS_ENABLED(CONFIG_MCF5441x))
esdhc_write32(&regs->proctl, PROCTL_INIT | PROCTL_D3CD);
if (IS_ENABLED(CONFIG_FSL_USDHC)) {
esdhc_setbits32(&regs->vendorspec, VENDORSPEC_PEREN |
VENDORSPEC_HCKEN | VENDORSPEC_IPGEN | VENDORSPEC_CKEN);
} else {
esdhc_setbits32(&regs->sysctl, SYSCTL_PEREN | SYSCTL_HCKEN
| SYSCTL_IPGEN | SYSCTL_CKEN);
/* Clearing tuning bits in case ROM has set it already */
esdhc_write32(&regs->mixctrl, 0);
esdhc_write32(&regs->autoc12err, 0);
esdhc_write32(&regs->clktunectrlstatus, 0);
}
if (priv->vs18_enable)
esdhc_setbits32(&regs->vendorspec, ESDHC_VENDORSPEC_VSELECT);
esdhc_write32(&regs->irqstaten, SDHCI_IRQ_EN_BITS);
cfg = &plat->cfg;
if (!CONFIG_IS_ENABLED(DM_MMC))
memset(cfg, '\0', sizeof(*cfg));
caps = esdhc_read32(&regs->hostcapblt);
/*
* MCF5441x RM declares in more points that sdhc clock speed must
* never exceed 25 Mhz. From this, the HS bit needs to be disabled
* from host capabilities.
*/
if (IS_ENABLED(CONFIG_MCF5441x))
caps &= ~HOSTCAPBLT_HSS;
if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC135))
caps &= ~(HOSTCAPBLT_SRS | HOSTCAPBLT_VS18 | HOSTCAPBLT_VS30);
if (IS_ENABLED(CONFIG_SYS_FSL_MMC_HAS_CAPBLT_VS33))
caps |= HOSTCAPBLT_VS33;
if (caps & HOSTCAPBLT_VS18)
cfg->voltages |= MMC_VDD_165_195;
if (caps & HOSTCAPBLT_VS30)
cfg->voltages |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & HOSTCAPBLT_VS33)
cfg->voltages |= MMC_VDD_32_33 | MMC_VDD_33_34;
cfg->name = "FSL_SDHC";
#if !CONFIG_IS_ENABLED(DM_MMC)
cfg->ops = &esdhc_ops;
#endif
if (IS_ENABLED(CONFIG_SYS_FSL_ESDHC_HAS_DDR_MODE))
cfg->host_caps |= MMC_MODE_DDR_52MHz;
if (caps & HOSTCAPBLT_HSS)
cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
cfg->host_caps |= priv->caps;
cfg->f_min = 400000;
cfg->f_max = min(priv->sdhc_clk, (u32)200000000);
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
esdhc_write32(&regs->dllctrl, 0);
if (priv->flags & ESDHC_FLAG_USDHC) {
if (priv->flags & ESDHC_FLAG_STD_TUNING) {
u32 val = esdhc_read32(&regs->tuning_ctrl);
val |= ESDHC_STD_TUNING_EN;
val &= ~ESDHC_TUNING_START_TAP_MASK;
val |= priv->tuning_start_tap;
val &= ~ESDHC_TUNING_STEP_MASK;
val |= (priv->tuning_step) << ESDHC_TUNING_STEP_SHIFT;
/* Disable the CMD CRC check for tuning, if not, need to
* add some delay after every tuning command, because
* hardware standard tuning logic will directly go to next
* step once it detect the CMD CRC error, will not wait for
* the card side to finally send out the tuning data, trigger
* the buffer read ready interrupt immediately. If usdhc send
* the next tuning command some eMMC card will stuck, can't
* response, block the tuning procedure or the first command
* after the whole tuning procedure always can't get any response.
*/
val |= ESDHC_TUNING_CMD_CRC_CHECK_DISABLE;
esdhc_write32(&regs->tuning_ctrl, val);
}
/*
* UHS doesn't have explicit ESDHC flags, so if it's
* not supported, disable it in config.
*/
if (CONFIG_IS_ENABLED(MMC_UHS_SUPPORT))
cfg->host_caps |= UHS_CAPS;
if (CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)) {
if (priv->flags & ESDHC_FLAG_HS200)
cfg->host_caps |= MMC_CAP(MMC_HS_200);
}
if (CONFIG_IS_ENABLED(MMC_HS400_SUPPORT)) {
if (priv->flags & ESDHC_FLAG_HS400)
cfg->host_caps |= MMC_CAP(MMC_HS_400);
}
if (CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT)) {
if (priv->flags & ESDHC_FLAG_HS400_ES)
cfg->host_caps |= MMC_CAP(MMC_HS_400_ES);
}
}
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
int fsl_esdhc_initialize(struct bd_info *bis, struct fsl_esdhc_cfg *cfg)
{
struct fsl_esdhc_plat *plat;
struct fsl_esdhc_priv *priv;
struct mmc_config *mmc_cfg;
struct mmc *mmc;
int ret;
if (!cfg)
return -EINVAL;
priv = calloc(sizeof(struct fsl_esdhc_priv), 1);
if (!priv)
return -ENOMEM;
plat = calloc(sizeof(struct fsl_esdhc_plat), 1);
if (!plat) {
free(priv);
return -ENOMEM;
}
priv->esdhc_regs = (struct fsl_esdhc *)(unsigned long)(cfg->esdhc_base);
priv->sdhc_clk = cfg->sdhc_clk;
priv->wp_enable = cfg->wp_enable;
mmc_cfg = &plat->cfg;
switch (cfg->max_bus_width) {
case 0: /* Not set in config; assume everything is supported */
case 8:
mmc_cfg->host_caps |= MMC_MODE_8BIT;
fallthrough;
case 4:
mmc_cfg->host_caps |= MMC_MODE_4BIT;
fallthrough;
case 1:
mmc_cfg->host_caps |= MMC_MODE_1BIT;
break;
default:
printf("invalid max bus width %u\n", cfg->max_bus_width);
return -EINVAL;
}
if (IS_ENABLED(CONFIG_ESDHC_DETECT_8_BIT_QUIRK))
mmc_cfg->host_caps &= ~MMC_MODE_8BIT;
ret = fsl_esdhc_init(priv, plat);
if (ret) {
debug("%s init failure\n", __func__);
free(plat);
free(priv);
return ret;
}
mmc = mmc_create(&plat->cfg, priv);
if (!mmc)
return -EIO;
priv->mmc = mmc;
return 0;
}
int fsl_esdhc_mmc_init(struct bd_info *bis)
{
struct fsl_esdhc_cfg *cfg;
cfg = calloc(sizeof(struct fsl_esdhc_cfg), 1);
cfg->esdhc_base = CFG_SYS_FSL_ESDHC_ADDR;
cfg->sdhc_clk = gd->arch.sdhc_clk;
return fsl_esdhc_initialize(bis, cfg);
}
#endif
#if CONFIG_IS_ENABLED(OF_LIBFDT)
__weak int esdhc_status_fixup(void *blob, const char *compat)
{
if (IS_ENABLED(CONFIG_FSL_ESDHC_PIN_MUX) && !hwconfig("esdhc")) {
do_fixup_by_compat(blob, compat, "status", "disabled",
sizeof("disabled"), 1);
return 1;
}
return 0;
}
void fdt_fixup_esdhc(void *blob, struct bd_info *bd)
{
const char *compat = "fsl,esdhc";
if (esdhc_status_fixup(blob, compat))
return;
do_fixup_by_compat_u32(blob, compat, "clock-frequency",
gd->arch.sdhc_clk, 1);
}
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
#include <asm/arch/clock.h>
__weak void init_clk_usdhc(u32 index)
{
}
static int fsl_esdhc_of_to_plat(struct udevice *dev)
{
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
struct udevice *vqmmc_dev;
int ret;
const void *fdt = gd->fdt_blob;
int node = dev_of_offset(dev);
fdt_addr_t addr;
unsigned int val;
if (!CONFIG_IS_ENABLED(OF_REAL))
return 0;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
priv->esdhc_regs = (struct fsl_esdhc *)addr;
priv->dev = dev;
priv->mode = -1;
val = fdtdec_get_int(fdt, node, "fsl,tuning-step", 1);
priv->tuning_step = val;
val = fdtdec_get_int(fdt, node, "fsl,tuning-start-tap",
ESDHC_TUNING_START_TAP_DEFAULT);
priv->tuning_start_tap = val;
val = fdtdec_get_int(fdt, node, "fsl,strobe-dll-delay-target",
ESDHC_STROBE_DLL_CTRL_SLV_DLY_TARGET_DEFAULT);
priv->strobe_dll_delay_target = val;
val = fdtdec_get_int(fdt, node, "fsl,signal-voltage-switch-extra-delay-ms", 0);
priv->signal_voltage_switch_extra_delay_ms = val;
if (dev_read_bool(dev, "broken-cd"))
priv->broken_cd = 1;
if (dev_read_prop(dev, "fsl,wp-controller", NULL)) {
priv->wp_enable = 1;
} else {
priv->wp_enable = 0;
}
#if CONFIG_IS_ENABLED(DM_GPIO)
gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio,
GPIOD_IS_IN);
gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio,
GPIOD_IS_IN);
#endif
priv->vs18_enable = 0;
if (!CONFIG_IS_ENABLED(DM_REGULATOR))
return 0;
/*
* If emmc I/O has a fixed voltage at 1.8V, this must be provided,
* otherwise, emmc will work abnormally.
*/
ret = device_get_supply_regulator(dev, "vqmmc-supply", &vqmmc_dev);
if (ret) {
dev_dbg(dev, "no vqmmc-supply\n");
} else {
priv->vqmmc_dev = vqmmc_dev;
ret = regulator_set_enable(vqmmc_dev, true);
if (ret) {
dev_err(dev, "fail to enable vqmmc-supply\n");
return ret;
}
if (regulator_get_value(vqmmc_dev) == 1800000)
priv->vs18_enable = 1;
}
return 0;
}
static int fsl_esdhc_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct fsl_esdhc_plat *plat = dev_get_plat(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
struct esdhc_soc_data *data =
(struct esdhc_soc_data *)dev_get_driver_data(dev);
struct mmc *mmc;
int ret;
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_fsl_esdhc *dtplat = &plat->dtplat;
priv->esdhc_regs = map_sysmem(dtplat->reg[0], dtplat->reg[1]);
if (dtplat->non_removable)
plat->cfg.host_caps |= MMC_CAP_NONREMOVABLE;
else
plat->cfg.host_caps &= ~MMC_CAP_NONREMOVABLE;
if (CONFIG_IS_ENABLED(DM_GPIO) && !dtplat->non_removable) {
struct udevice *gpiodev;
ret = device_get_by_ofplat_idx(dtplat->cd_gpios->idx, &gpiodev);
if (ret)
return ret;
ret = gpio_dev_request_index(gpiodev, gpiodev->name, "cd-gpios",
dtplat->cd_gpios->arg[0], GPIOD_IS_IN,
dtplat->cd_gpios->arg[1], &priv->cd_gpio);
if (ret)
return ret;
}
#endif
if (data)
priv->flags = data->flags;
/*
* TODO:
* Because lack of clk driver, if SDHC clk is not enabled,
* need to enable it first before this driver is invoked.
*
* we use MXC_ESDHC_CLK to get clk freq.
* If one would like to make this function work,
* the aliases should be provided in dts as this:
*
* aliases {
* mmc0 = &usdhc1;
* mmc1 = &usdhc2;
* mmc2 = &usdhc3;
* mmc3 = &usdhc4;
* };
* Then if your board only supports mmc2 and mmc3, but we can
* correctly get the seq as 2 and 3, then let mxc_get_clock
* work as expected.
*/
#if CONFIG_IS_ENABLED(CLK)
/* Assigned clock already set clock */
ret = clk_get_by_name(dev, "per", &priv->per_clk);
if (ret) {
printf("Failed to get per_clk\n");
return ret;
}
ret = clk_enable(&priv->per_clk);
if (ret) {
printf("Failed to enable per_clk\n");
return ret;
}
priv->sdhc_clk = clk_get_rate(&priv->per_clk);
#else
init_clk_usdhc(dev_seq(dev));
priv->sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK + dev_seq(dev));
if (priv->sdhc_clk <= 0) {
dev_err(dev, "Unable to get clk for %s\n", dev->name);
return -EINVAL;
}
#endif
ret = fsl_esdhc_init(priv, plat);
if (ret) {
dev_err(dev, "fsl_esdhc_init failure\n");
return ret;
}
if (CONFIG_IS_ENABLED(OF_REAL)) {
ret = mmc_of_parse(dev, &plat->cfg);
if (ret)
return ret;
}
mmc = &plat->mmc;
mmc->cfg = &plat->cfg;
mmc->dev = dev;
upriv->mmc = mmc;
return esdhc_init_common(priv, mmc);
}
static int fsl_esdhc_get_cd(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_plat(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
if (plat->cfg.host_caps & MMC_CAP_NONREMOVABLE)
return 1;
return esdhc_getcd_common(priv);
}
static int fsl_esdhc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct fsl_esdhc_plat *plat = dev_get_plat(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_send_cmd_common(priv, &plat->mmc, cmd, data);
}
static int fsl_esdhc_set_ios(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_plat(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_set_ios_common(priv, &plat->mmc);
}
static int __maybe_unused fsl_esdhc_set_enhanced_strobe(struct udevice *dev)
{
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
struct fsl_esdhc *regs = priv->esdhc_regs;
u32 m;
m = esdhc_read32(&regs->mixctrl);
m |= MIX_CTRL_HS400_ES;
esdhc_write32(&regs->mixctrl, m);
return 0;
}
static int fsl_esdhc_wait_dat0(struct udevice *dev, int state,
int timeout_us)
{
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_wait_dat0_common(priv, state, timeout_us);
}
static const struct dm_mmc_ops fsl_esdhc_ops = {
.get_cd = fsl_esdhc_get_cd,
.send_cmd = fsl_esdhc_send_cmd,
.set_ios = fsl_esdhc_set_ios,
#ifdef MMC_SUPPORTS_TUNING
.execute_tuning = fsl_esdhc_execute_tuning,
#endif
#if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT)
.set_enhanced_strobe = fsl_esdhc_set_enhanced_strobe,
#endif
.wait_dat0 = fsl_esdhc_wait_dat0,
};
static struct esdhc_soc_data usdhc_imx7d_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_HS400,
};
static struct esdhc_soc_data usdhc_imx7ulp_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_HS400,
};
static struct esdhc_soc_data usdhc_imx8qm_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING |
ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200 |
ESDHC_FLAG_HS400 | ESDHC_FLAG_HS400_ES,
};
static const struct udevice_id fsl_esdhc_ids[] = {
{ .compatible = "fsl,imx51-esdhc", },
{ .compatible = "fsl,imx53-esdhc", },
{ .compatible = "fsl,imx6ul-usdhc", },
{ .compatible = "fsl,imx6sx-usdhc", },
{ .compatible = "fsl,imx6sl-usdhc", },
{ .compatible = "fsl,imx6q-usdhc", },
{ .compatible = "fsl,imx7d-usdhc", .data = (ulong)&usdhc_imx7d_data,},
{ .compatible = "fsl,imx7ulp-usdhc", .data = (ulong)&usdhc_imx7ulp_data,},
{ .compatible = "fsl,imx8qm-usdhc", .data = (ulong)&usdhc_imx8qm_data,},
{ .compatible = "fsl,imx8mm-usdhc", .data = (ulong)&usdhc_imx8qm_data,},
{ .compatible = "fsl,imx8mn-usdhc", .data = (ulong)&usdhc_imx8qm_data,},
{ .compatible = "fsl,imx8mp-usdhc", .data = (ulong)&usdhc_imx8qm_data,},
{ .compatible = "fsl,imx8mq-usdhc", .data = (ulong)&usdhc_imx8qm_data,},
{ .compatible = "fsl,imxrt-usdhc", },
{ .compatible = "fsl,esdhc", },
{ /* sentinel */ }
};
static int fsl_esdhc_bind(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_plat(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
U_BOOT_DRIVER(fsl_esdhc) = {
.name = "fsl_esdhc",
.id = UCLASS_MMC,
.of_match = fsl_esdhc_ids,
.of_to_plat = fsl_esdhc_of_to_plat,
.ops = &fsl_esdhc_ops,
.bind = fsl_esdhc_bind,
.probe = fsl_esdhc_probe,
.plat_auto = sizeof(struct fsl_esdhc_plat),
.priv_auto = sizeof(struct fsl_esdhc_priv),
};
DM_DRIVER_ALIAS(fsl_esdhc, fsl_imx6q_usdhc)
#endif