trufflehog/pkg/engine/engine.go
ahrav bf89c89e09
[bug] - Correct Line Number Calculation (#3550)
* correclty report line number

* add addiitonal test cases
2024-11-05 08:53:18 -08:00

1334 lines
45 KiB
Go

package engine
import (
"bytes"
"errors"
"fmt"
"runtime"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/adrg/strutil"
"github.com/adrg/strutil/metrics"
lru "github.com/hashicorp/golang-lru/v2"
"google.golang.org/protobuf/proto"
"github.com/trufflesecurity/trufflehog/v3/pkg/common"
"github.com/trufflesecurity/trufflehog/v3/pkg/config"
"github.com/trufflesecurity/trufflehog/v3/pkg/context"
"github.com/trufflesecurity/trufflehog/v3/pkg/decoders"
"github.com/trufflesecurity/trufflehog/v3/pkg/detectors"
"github.com/trufflesecurity/trufflehog/v3/pkg/engine/ahocorasick"
"github.com/trufflesecurity/trufflehog/v3/pkg/giturl"
"github.com/trufflesecurity/trufflehog/v3/pkg/output"
"github.com/trufflesecurity/trufflehog/v3/pkg/pb/detectorspb"
"github.com/trufflesecurity/trufflehog/v3/pkg/pb/source_metadatapb"
"github.com/trufflesecurity/trufflehog/v3/pkg/pb/sourcespb"
"github.com/trufflesecurity/trufflehog/v3/pkg/sources"
)
const detectionTimeout = 10 * time.Second
var errOverlap = errors.New(
"More than one detector has found this result. For your safety, verification has been disabled." +
"You can override this behavior by using the --allow-verification-overlap flag.",
)
// Metrics for the scan engine for external consumption.
type Metrics struct {
BytesScanned uint64
ChunksScanned uint64
VerifiedSecretsFound uint64
UnverifiedSecretsFound uint64
AvgDetectorTime map[string]time.Duration
scanStartTime time.Time
ScanDuration time.Duration
}
// runtimeMetrics for the scan engine for internal use by the engine.
type runtimeMetrics struct {
mu sync.RWMutex
Metrics
detectorAvgTime sync.Map
}
// getScanDuration returns the duration of the scan.
// If the scan is still running, it returns the time since the scan started.
func (m *Metrics) getScanDuration() time.Duration {
if m.ScanDuration == 0 {
return time.Since(m.scanStartTime)
}
return m.ScanDuration
}
// ResultsDispatcher is an interface for dispatching findings of detected results.
// Implementations can vary from printing results to the console to sending results to an external system.
type ResultsDispatcher interface {
Dispatch(ctx context.Context, result detectors.ResultWithMetadata) error
}
// Printer is used to format found results and output them to the user. Ex JSON, plain text, etc.
// Please note printer implementations SHOULD BE thread safe.
type Printer interface {
Print(ctx context.Context, r *detectors.ResultWithMetadata) error
}
// PrinterDispatcher wraps an existing Printer implementation and adapts it to the ResultsDispatcher interface.
type PrinterDispatcher struct{ printer Printer }
// NewPrinterDispatcher creates a new PrinterDispatcher instance with the provided Printer.
func NewPrinterDispatcher(printer Printer) *PrinterDispatcher { return &PrinterDispatcher{printer} }
// Dispatch sends the result to the printer.
func (p *PrinterDispatcher) Dispatch(ctx context.Context, result detectors.ResultWithMetadata) error {
return p.printer.Print(ctx, &result)
}
// Config used to configure the engine.
type Config struct {
// Number of concurrent scanner workers,
// also serves as a multiplier for other worker types (e.g., detector workers, notifier workers)
Concurrency int
Decoders []decoders.Decoder
Detectors []detectors.Detector
DetectorVerificationOverrides map[config.DetectorID]bool
IncludeDetectors string
ExcludeDetectors string
CustomVerifiersOnly bool
VerifierEndpoints map[string]string
// Verify determines whether the scanner will verify candidate secrets.
Verify bool
// Defines which results will be notified by the engine
// (e.g., verified, unverified, unknown)
Results map[string]struct{}
LogFilteredUnverified bool
// FilterEntropy filters out unverified results using Shannon entropy.
FilterEntropy float64
// FilterUnverified sets the filterUnverified flag on the engine. If set to
// true, the engine will only return the first unverified result for a chunk for a detector.
FilterUnverified bool
ShouldScanEntireChunk bool
Dispatcher ResultsDispatcher
// SourceManager is used to manage the sources and units.
// TODO (ahrav): Update this comment, i'm dumb and don't really know what else it does.
SourceManager *sources.SourceManager
// PrintAvgDetectorTime sets the printAvgDetectorTime flag on the engine. If set to
// true, the engine will print the average time taken by each detector.
// This option allows us to measure the time taken for each detector ONLY if
// the engine is configured to print the results.
// Calculating the average time taken by each detector is an expensive operation
// and should be avoided unless specified by the user.
PrintAvgDetectorTime bool
// VerificationOverlap determines whether the scanner will attempt to verify candidate secrets
// that have been detected by multiple detectors.
// By default, it is set to true.
VerificationOverlap bool
// DetectorWorkerMultiplier is used to determine the number of detector workers to spawn.
DetectorWorkerMultiplier int
// NotificationWorkerMultiplier is used to determine the number of notification workers to spawn.
NotificationWorkerMultiplier int
// VerificationOverlapWorkerMultiplier is used to determine the number of verification overlap workers to spawn.
VerificationOverlapWorkerMultiplier int
}
// Engine represents the core scanning engine responsible for detecting secrets in input data.
// It manages the lifecycle of the scanning process, including initialization, worker management,
// and result notification. The engine is designed to be flexible and configurable, allowing for
// customization through various options and configurations.
type Engine struct {
// CLI flags.
concurrency int
decoders []decoders.Decoder
detectors []detectors.Detector
// Any detectors configured to override sources' verification flags
detectorVerificationOverrides map[config.DetectorID]bool
// filterUnverified is used to reduce the number of unverified results.
// If there are multiple unverified results for the same chunk for the same detector,
// only the first one will be kept.
filterUnverified bool
// entropyFilter is used to filter out unverified results using Shannon entropy.
filterEntropy float64
notifyVerifiedResults bool
notifyUnverifiedResults bool
notifyUnknownResults bool
retainFalsePositives bool
verificationOverlap bool
printAvgDetectorTime bool
// By default, the engine will only scan a subset of the chunk if a detector matches the chunk.
// If this flag is set to true, the engine will scan the entire chunk.
scanEntireChunk bool
// ahoCorasickHandler manages the Aho-Corasick trie and related keyword lookups.
ahoCorasickCore *ahocorasick.Core
// Engine synchronization primitives.
sourceManager *sources.SourceManager
results chan detectors.ResultWithMetadata
detectableChunksChan chan detectableChunk
verificationOverlapChunksChan chan verificationOverlapChunk
workersWg sync.WaitGroup
verificationOverlapWg sync.WaitGroup
wgDetectorWorkers sync.WaitGroup
WgNotifier sync.WaitGroup
// Runtime information.
metrics runtimeMetrics
// numFoundResults is used to keep track of the number of results found.
numFoundResults uint32
// ResultsDispatcher is used to send results.
dispatcher ResultsDispatcher
// dedupeCache is used to deduplicate results by comparing the
// detector type, raw result, and source metadata
dedupeCache *lru.Cache[string, detectorspb.DecoderType]
// verify determines whether the scanner will attempt to verify candidate secrets.
verify bool
// Note: bad hack only used for testing.
verificationOverlapTracker *verificationOverlapTracker
// detectorWorkerMultiplier is used to calculate the number of detector workers.
detectorWorkerMultiplier int
// notificationWorkerMultiplier is used to calculate the number of notification workers.
notificationWorkerMultiplier int
// verificationOverlapWorkerMultiplier is used to calculate the number of verification overlap workers.
verificationOverlapWorkerMultiplier int
}
// NewEngine creates a new Engine instance with the provided configuration.
func NewEngine(ctx context.Context, cfg *Config) (*Engine, error) {
engine := &Engine{
concurrency: cfg.Concurrency,
decoders: cfg.Decoders,
detectors: cfg.Detectors,
dispatcher: cfg.Dispatcher,
verify: cfg.Verify,
filterUnverified: cfg.FilterUnverified,
filterEntropy: cfg.FilterEntropy,
printAvgDetectorTime: cfg.PrintAvgDetectorTime,
retainFalsePositives: cfg.LogFilteredUnverified,
verificationOverlap: cfg.VerificationOverlap,
sourceManager: cfg.SourceManager,
scanEntireChunk: cfg.ShouldScanEntireChunk,
detectorVerificationOverrides: cfg.DetectorVerificationOverrides,
detectorWorkerMultiplier: cfg.DetectorWorkerMultiplier,
notificationWorkerMultiplier: cfg.NotificationWorkerMultiplier,
verificationOverlapWorkerMultiplier: cfg.VerificationOverlapWorkerMultiplier,
}
if engine.sourceManager == nil {
return nil, fmt.Errorf("source manager is required")
}
engine.setDefaults(ctx)
// Build include and exclude detector sets for filtering on engine initialization.
includeDetectorSet, excludeDetectorSet, err := buildDetectorSets(cfg)
if err != nil {
return nil, err
}
// Apply include/exclude filters.
var filters []func(detectors.Detector) bool
if len(includeDetectorSet) > 0 {
filters = append(filters, func(d detectors.Detector) bool {
_, ok := getWithDetectorID(d, includeDetectorSet)
return ok
})
}
if len(excludeDetectorSet) > 0 {
filters = append(filters, func(d detectors.Detector) bool {
_, ok := getWithDetectorID(d, excludeDetectorSet)
return !ok
})
}
// Apply custom verifier endpoints to detectors that support it.
detectorsWithCustomVerifierEndpoints, err := parseCustomVerifierEndpoints(cfg.VerifierEndpoints)
if err != nil {
return nil, err
}
if len(detectorsWithCustomVerifierEndpoints) > 0 {
filters = append(filters, func(d detectors.Detector) bool {
urls, ok := getWithDetectorID(d, detectorsWithCustomVerifierEndpoints)
if !ok {
return true
}
customizer, ok := d.(detectors.EndpointCustomizer)
if !ok {
return false
}
if cfg.CustomVerifiersOnly && len(urls) > 0 {
customizer.UseCloudEndpoint(false)
customizer.UseFoundEndpoints(false)
}
if err := customizer.SetConfiguredEndpoints(urls...); err != nil {
return false
}
return true
})
}
engine.applyFilters(filters...)
if results := cfg.Results; len(results) > 0 {
_, ok := results["verified"]
engine.notifyVerifiedResults = ok
_, ok = results["unknown"]
engine.notifyUnknownResults = ok
_, ok = results["unverified"]
engine.notifyUnverifiedResults = ok
if _, ok = results["filtered_unverified"]; ok {
engine.retainFalsePositives = ok
engine.notifyUnverifiedResults = ok
}
}
if err := engine.initialize(ctx); err != nil {
return nil, err
}
return engine, nil
}
// setDefaults ensures that if specific engine properties aren't provided,
// they're set to reasonable default values. It makes the engine robust to
// incomplete configuration.
func (e *Engine) setDefaults(ctx context.Context) {
if e.concurrency == 0 {
numCPU := runtime.NumCPU()
ctx.Logger().Info("No concurrency specified, defaulting to max", "cpu", numCPU)
e.concurrency = numCPU
}
if e.detectorWorkerMultiplier < 1 {
// bound by net i/o so it's higher than other workers
e.detectorWorkerMultiplier = 8
}
if e.notificationWorkerMultiplier < 1 {
e.notificationWorkerMultiplier = 1
}
if e.verificationOverlapWorkerMultiplier < 1 {
e.verificationOverlapWorkerMultiplier = 1
}
// Default decoders handle common encoding formats.
if len(e.decoders) == 0 {
e.decoders = decoders.DefaultDecoders()
}
// Only use the default detectors if none are provided.
if len(e.detectors) == 0 {
e.detectors = DefaultDetectors()
}
if e.dispatcher == nil {
e.dispatcher = NewPrinterDispatcher(new(output.PlainPrinter))
}
e.notifyVerifiedResults = true
e.notifyUnverifiedResults = true
e.notifyUnknownResults = true
ctx.Logger().V(4).Info("default engine options set")
}
func buildDetectorSets(cfg *Config) (map[config.DetectorID]struct{}, map[config.DetectorID]struct{}, error) {
includeList, err := config.ParseDetectors(cfg.IncludeDetectors)
if err != nil {
return nil, nil, fmt.Errorf("invalid include list detector configuration: %w", err)
}
excludeList, err := config.ParseDetectors(cfg.ExcludeDetectors)
if err != nil {
return nil, nil, fmt.Errorf("invalid exclude list detector configuration: %w", err)
}
includeDetectorSet := detectorTypeToSet(includeList)
excludeDetectorSet := detectorTypeToSet(excludeList)
// Verify that all the user-provided detectors support the optional
// detector features.
if id, err := verifyDetectorsAreVersioner(includeDetectorSet); err != nil {
return nil, nil, fmt.Errorf("invalid include list detector configuration id %v: %w", id, err)
}
if id, err := verifyDetectorsAreVersioner(excludeDetectorSet); err != nil {
return nil, nil, fmt.Errorf("invalid exclude list detector configuration id %v: %w", id, err)
}
return includeDetectorSet, excludeDetectorSet, nil
}
func parseCustomVerifierEndpoints(endpoints map[string]string) (map[config.DetectorID][]string, error) {
if len(endpoints) == 0 {
return nil, nil
}
customVerifierEndpoints, err := config.ParseVerifierEndpoints(endpoints)
if err != nil {
return nil, fmt.Errorf("invalid verifier detector configuration: %w", err)
}
if id, err := verifyDetectorsAreVersioner(customVerifierEndpoints); err != nil {
return nil, fmt.Errorf("invalid verifier detector configuration id %v: %w", id, err)
}
// Extra check for endpoint customization.
isEndpointCustomizer := DefaultDetectorTypesImplementing[detectors.EndpointCustomizer]()
for id := range customVerifierEndpoints {
if _, ok := isEndpointCustomizer[id.ID]; !ok {
return nil, fmt.Errorf("endpoint provided but detector does not support endpoint customization: %w", err)
}
}
return customVerifierEndpoints, nil
}
// detectorTypeToSet is a helper function to convert a slice of detector IDs into a set.
func detectorTypeToSet(detectors []config.DetectorID) map[config.DetectorID]struct{} {
out := make(map[config.DetectorID]struct{}, len(detectors))
for _, d := range detectors {
out[d] = struct{}{}
}
return out
}
// getWithDetectorID is a helper function to get a value from a map using a
// detector's ID. This function behaves like a normal map lookup, with an extra
// step of checking for the non-specific version of a detector.
func getWithDetectorID[T any](d detectors.Detector, data map[config.DetectorID]T) (T, bool) {
key := config.GetDetectorID(d)
// Check if the specific ID is provided.
if t, ok := data[key]; ok || key.Version == 0 {
return t, ok
}
// Check if the generic type is provided without a version.
// This means "all" versions of a type.
key.Version = 0
t, ok := data[key]
return t, ok
}
// verifyDetectorsAreVersioner checks all keys in a provided map to verify the
// provided type is actually a Versioner.
func verifyDetectorsAreVersioner[T any](data map[config.DetectorID]T) (config.DetectorID, error) {
isVersioner := DefaultDetectorTypesImplementing[detectors.Versioner]()
for id := range data {
if id.Version == 0 {
// Version not provided.
continue
}
if _, ok := isVersioner[id.ID]; ok {
// Version provided for a Versioner detector.
continue
}
// Version provided on a non-Versioner detector.
return id, fmt.Errorf("version provided but detector does not have a version")
}
return config.DetectorID{}, nil
}
// applyFilters applies a variable number of filters to the detectors.
func (e *Engine) applyFilters(filters ...func(detectors.Detector) bool) {
for _, filter := range filters {
e.detectors = filterDetectors(filter, e.detectors)
}
}
func filterDetectors(filterFunc func(detectors.Detector) bool, input []detectors.Detector) []detectors.Detector {
var out []detectors.Detector
for _, detector := range input {
if filterFunc(detector) {
out = append(out, detector)
}
}
return out
}
// initialize prepares the engine's internal structures. The LRU cache optimizes
// deduplication efforts, allowing the engine to quickly check if a chunk has
// been processed before, thereby saving computational overhead.
func (e *Engine) initialize(ctx context.Context) error {
// TODO (ahrav): Determine the optimal cache size.
const cacheSize = 512 // number of entries in the LRU cache
cache, err := lru.New[string, detectorspb.DecoderType](cacheSize)
if err != nil {
return fmt.Errorf("failed to initialize LRU cache: %w", err)
}
const (
// detectableChunksChanMultiplier is set to accommodate a high number of concurrent worker goroutines.
// This multiplier ensures that the detectableChunksChan channel has sufficient buffer capacity
// to hold messages from multiple worker groups (detector workers/ verificationOverlap workers) without blocking.
// A large buffer helps accommodate for the fact workers are producing data at a faster rate
// than it can be consumed.
detectableChunksChanMultiplier = 50
// verificationOverlapChunksChanMultiplier uses a smaller buffer compared to detectableChunksChanMultiplier.
// This reflects the anticipated lower volume of data that needs re-verification.
// The buffer size is a trade-off between memory usage and the need to prevent blocking.
verificationOverlapChunksChanMultiplier = 25
resultsChanMultiplier = detectableChunksChanMultiplier
)
// Channels are used for communication between different parts of the engine,
// ensuring that data flows smoothly without race conditions.
// The buffer sizes for these channels are set to multiples of defaultChannelBuffer,
// considering the expected concurrency and workload in the system.
e.detectableChunksChan = make(chan detectableChunk, defaultChannelBuffer*detectableChunksChanMultiplier)
e.verificationOverlapChunksChan = make(
chan verificationOverlapChunk, defaultChannelBuffer*verificationOverlapChunksChanMultiplier,
)
e.results = make(chan detectors.ResultWithMetadata, defaultChannelBuffer*resultsChanMultiplier)
e.dedupeCache = cache
ctx.Logger().V(4).Info("engine initialized")
// Configure the EntireChunkSpanCalculator if the engine is set to scan the entire chunk.
var ahoCOptions []ahocorasick.CoreOption
if e.scanEntireChunk {
ahoCOptions = append(ahoCOptions, ahocorasick.WithSpanCalculator(new(ahocorasick.EntireChunkSpanCalculator)))
}
ctx.Logger().V(4).Info("setting up aho-corasick core")
e.ahoCorasickCore = ahocorasick.NewAhoCorasickCore(e.detectors, ahoCOptions...)
ctx.Logger().V(4).Info("set up aho-corasick core")
return nil
}
type verificationOverlapTracker struct {
verificationOverlapDuplicateCount int
mu sync.Mutex
}
func (r *verificationOverlapTracker) increment() {
r.mu.Lock()
r.verificationOverlapDuplicateCount++
r.mu.Unlock()
}
const ignoreTag = "trufflehog:ignore"
// HasFoundResults returns true if any results are found.
func (e *Engine) HasFoundResults() bool {
return atomic.LoadUint32(&e.numFoundResults) > 0
}
// GetMetrics returns a copy of Metrics.
// It's safe for concurrent use, and the caller can't modify the original data.
func (e *Engine) GetMetrics() Metrics {
e.metrics.mu.RLock()
defer e.metrics.mu.RUnlock()
result := e.metrics.Metrics
result.AvgDetectorTime = make(map[string]time.Duration, len(e.metrics.AvgDetectorTime))
for detectorName, durations := range e.DetectorAvgTime() {
var total time.Duration
for _, d := range durations {
total += d
}
avgDuration := total / time.Duration(len(durations))
result.AvgDetectorTime[detectorName] = avgDuration
}
result.ScanDuration = e.metrics.getScanDuration()
return result
}
// GetDetectorsMetrics returns a copy of the average time taken by each detector.
func (e *Engine) GetDetectorsMetrics() map[string]time.Duration {
e.metrics.mu.RLock()
defer e.metrics.mu.RUnlock()
result := make(map[string]time.Duration, len(DefaultDetectors()))
for detectorName, durations := range e.DetectorAvgTime() {
var total time.Duration
for _, d := range durations {
total += d
}
avgDuration := total / time.Duration(len(durations))
result[detectorName] = avgDuration
}
return result
}
// DetectorAvgTime returns the average time taken by each detector.
func (e *Engine) DetectorAvgTime() map[string][]time.Duration {
logger := context.Background().Logger()
avgTime := map[string][]time.Duration{}
e.metrics.detectorAvgTime.Range(func(k, v any) bool {
key, ok := k.(string)
if !ok {
logger.Info("expected detectorAvgTime key to be a string")
return true
}
value, ok := v.([]time.Duration)
if !ok {
logger.Info("expected detectorAvgTime value to be []time.Duration")
return true
}
avgTime[key] = value
return true
})
return avgTime
}
// Start initializes and activates the engine's processing pipeline.
// It sets up various default configurations, prepares lookup structures for
// detectors, and kickstarts all necessary workers. Once started, the engine
// begins processing input data to identify secrets.
func (e *Engine) Start(ctx context.Context) {
e.metrics = runtimeMetrics{Metrics: Metrics{scanStartTime: time.Now()}}
e.sanityChecks(ctx)
e.startWorkers(ctx)
}
var defaultChannelBuffer = runtime.NumCPU()
// Sanity check detectors for duplicate configuration. Only log in case
// a detector has been configured in a way that isn't represented by
// the DetectorID (type and version).
func (e *Engine) sanityChecks(ctx context.Context) {
seenDetectors := make(map[config.DetectorID]struct{}, len(e.detectors))
for _, det := range e.detectors {
id := config.GetDetectorID(det)
if _, ok := seenDetectors[id]; ok && id.ID != detectorspb.DetectorType_CustomRegex {
ctx.Logger().Info("possible duplicate detector configured", "detector", id)
}
seenDetectors[id] = struct{}{}
}
}
// startWorkers initiates all necessary workers. Workers handle processing of
// chunks concurrently. Separating the initialization of different types of
// workers helps in scalability and makes it easier to diagnose issues.
func (e *Engine) startWorkers(ctx context.Context) {
// Scanner workers process input data and extract chunks for detectors.
e.startScannerWorkers(ctx)
// Detector workers apply keyword matching, regexes and API calls to detect secrets in chunks.
e.startDetectorWorkers(ctx)
// verificationOverlap workers handle verification of chunks that have been detected by multiple detectors.
// They ensure that verification is disabled for any secrets that have been detected by multiple detectors.
e.startVerificationOverlapWorkers(ctx)
// ResultsDispatcher workers communicate detected issues to the user or any downstream systems.
// We want 1/4th of the notifier workers as the number of scanner workers.
e.startNotifierWorkers(ctx)
}
func (e *Engine) startScannerWorkers(ctx context.Context) {
ctx.Logger().V(2).Info("starting scanner workers", "count", e.concurrency)
for worker := uint64(0); worker < uint64(e.concurrency); worker++ {
e.workersWg.Add(1)
go func() {
ctx := context.WithValue(ctx, "scanner_worker_id", common.RandomID(5))
defer common.Recover(ctx)
defer e.workersWg.Done()
e.scannerWorker(ctx)
}()
}
}
func (e *Engine) startDetectorWorkers(ctx context.Context) {
numWorkers := e.concurrency * e.detectorWorkerMultiplier
ctx.Logger().V(2).Info("starting detector workers", "count", numWorkers)
for worker := 0; worker < numWorkers; worker++ {
e.wgDetectorWorkers.Add(1)
go func() {
ctx := context.WithValue(ctx, "detector_worker_id", common.RandomID(5))
defer common.Recover(ctx)
defer e.wgDetectorWorkers.Done()
e.detectorWorker(ctx)
}()
}
}
func (e *Engine) startVerificationOverlapWorkers(ctx context.Context) {
numWorkers := e.concurrency * e.verificationOverlapWorkerMultiplier
ctx.Logger().V(2).Info("starting verificationOverlap workers", "count", numWorkers)
for worker := 0; worker < numWorkers; worker++ {
e.verificationOverlapWg.Add(1)
go func() {
ctx := context.WithValue(ctx, "verification_overlap_worker_id", common.RandomID(5))
defer common.Recover(ctx)
defer e.verificationOverlapWg.Done()
e.verificationOverlapWorker(ctx)
}()
}
}
func (e *Engine) startNotifierWorkers(ctx context.Context) {
numWorkers := e.notificationWorkerMultiplier * e.concurrency
ctx.Logger().V(2).Info("starting notifier workers", "count", numWorkers)
for worker := 0; worker < numWorkers; worker++ {
e.WgNotifier.Add(1)
go func() {
ctx := context.WithValue(ctx, "notifier_worker_id", common.RandomID(5))
defer common.Recover(ctx)
defer e.WgNotifier.Done()
e.notifierWorker(ctx)
}()
}
}
// Finish waits for running sources to complete and workers to finish scanning
// chunks before closing their respective channels. Once Finish is called, no
// more sources may be scanned by the engine.
func (e *Engine) Finish(ctx context.Context) error {
defer common.RecoverWithExit(ctx)
// Wait for the sources to finish putting chunks onto the chunks channel.
err := e.sourceManager.Wait()
e.workersWg.Wait() // Wait for the workers to finish scanning chunks.
close(e.verificationOverlapChunksChan)
e.verificationOverlapWg.Wait()
close(e.detectableChunksChan)
e.wgDetectorWorkers.Wait() // Wait for the detector workers to finish detecting chunks.
close(e.results) // Detector workers are done, close the results channel and call it a day.
e.WgNotifier.Wait() // Wait for the notifier workers to finish notifying results.
e.metrics.ScanDuration = time.Since(e.metrics.scanStartTime)
return err
}
func (e *Engine) ChunksChan() <-chan *sources.Chunk {
return e.sourceManager.Chunks()
}
func (e *Engine) ResultsChan() chan detectors.ResultWithMetadata {
return e.results
}
// ScanChunk injects a chunk into the output stream of chunks to be scanned.
// This method should rarely be used. TODO(THOG-1577): Remove when dependencies
// no longer rely on this functionality.
func (e *Engine) ScanChunk(chunk *sources.Chunk) {
e.sourceManager.ScanChunk(chunk)
}
// detectableChunk is a decoded chunk that is ready to be scanned by its detector.
type detectableChunk struct {
detector *ahocorasick.DetectorMatch
chunk sources.Chunk
decoder detectorspb.DecoderType
wgDoneFn func()
}
// verificationOverlapChunk is a decoded chunk that has multiple detectors that match it.
// It will be initially processed with verification disabled, and then reprocessed with verification
// enabled if the same secret was not found by multiple detectors.
type verificationOverlapChunk struct {
chunk sources.Chunk
decoder detectorspb.DecoderType
detectors []*ahocorasick.DetectorMatch
verificationOverlapWgDoneFn func()
}
func (e *Engine) scannerWorker(ctx context.Context) {
var wgDetect sync.WaitGroup
var wgVerificationOverlap sync.WaitGroup
for chunk := range e.ChunksChan() {
startTime := time.Now()
sourceVerify := chunk.Verify
for _, decoder := range e.decoders {
decodeStart := time.Now()
decoded := decoder.FromChunk(chunk)
decodeTime := time.Since(decodeStart).Microseconds()
decodeLatency.WithLabelValues(decoder.Type().String(), chunk.SourceName).Observe(float64(decodeTime))
if decoded == nil {
ctx.Logger().V(5).Info("decoder not applicable for chunk", "decoder", decoder.Type().String(), "chunk", chunk)
continue
}
matchingDetectors := e.ahoCorasickCore.FindDetectorMatches(decoded.Chunk.Data)
if len(matchingDetectors) > 1 && !e.verificationOverlap {
wgVerificationOverlap.Add(1)
e.verificationOverlapChunksChan <- verificationOverlapChunk{
chunk: *decoded.Chunk,
detectors: matchingDetectors,
decoder: decoded.DecoderType,
verificationOverlapWgDoneFn: wgVerificationOverlap.Done,
}
continue
}
for _, detector := range matchingDetectors {
decoded.Chunk.Verify = e.shouldVerifyChunk(sourceVerify, detector, e.detectorVerificationOverrides)
wgDetect.Add(1)
e.detectableChunksChan <- detectableChunk{
chunk: *decoded.Chunk,
detector: detector,
decoder: decoded.DecoderType,
wgDoneFn: wgDetect.Done,
}
}
}
dataSize := float64(len(chunk.Data))
scanBytesPerChunk.Observe(dataSize)
jobBytesScanned.WithLabelValues(
strconv.Itoa(int(chunk.JobID)),
chunk.SourceType.String(),
chunk.SourceName,
).Add(dataSize)
chunksScannedLatency.Observe(float64(time.Since(startTime).Microseconds()))
jobChunksScanned.WithLabelValues(
strconv.Itoa(int(chunk.JobID)),
chunk.SourceType.String(),
chunk.SourceName,
).Inc()
atomic.AddUint64(&e.metrics.ChunksScanned, 1)
atomic.AddUint64(&e.metrics.BytesScanned, uint64(dataSize))
}
wgVerificationOverlap.Wait()
wgDetect.Wait()
ctx.Logger().V(4).Info("finished scanning chunks")
}
func (e *Engine) shouldVerifyChunk(
sourceVerify bool,
detector detectors.Detector,
detectorVerificationOverrides map[config.DetectorID]bool,
) bool {
// The verify flag takes precedence over the detector's verification flag.
if !e.verify {
return false
}
detectorId := config.DetectorID{ID: detector.Type(), Version: 0}
if v, ok := detector.(detectors.Versioner); ok {
detectorId.Version = v.Version()
}
if detectorVerify, ok := detectorVerificationOverrides[detectorId]; ok {
return detectorVerify
}
// If the user is running with a detector verification override that does not specify a particular detector version,
// then its override map entry will have version 0. We should check for that too, but if the detector being checked
// doesn't have any version information then its version is 0, so we've already done the check, and we don't need to
// do it a second time.
if detectorId.Version != 0 {
detectorId.Version = 0
if detectorVerify, ok := detectorVerificationOverrides[detectorId]; ok {
return detectorVerify
}
}
return sourceVerify
}
// chunkSecretKey ties secrets to the specific detector that found them. This allows identifying identical
// credentials extracted by multiple different detectors processing the same chunk. Or duplicates found
// by the same detector in the chunk. Exact matches on lookup indicate a duplicate secret for a detector
// in that chunk - which is expected and not malicious. Those intra-detector dupes are still verified.
type chunkSecretKey struct {
secret string
detectorKey ahocorasick.DetectorKey
}
func likelyDuplicate(ctx context.Context, val chunkSecretKey, dupes map[chunkSecretKey]struct{}) bool {
const similarityThreshold = 0.9
valStr := val.secret
for dupeKey := range dupes {
dupe := dupeKey.secret
// Avoid comparing strings of vastly different lengths.
if len(dupe)*10 < len(valStr)*9 || len(dupe)*10 > len(valStr)*11 {
continue
}
// If the detector type is the same, we don't need to compare the strings.
// These are not duplicates, and should be verified.
if val.detectorKey.Type() == dupeKey.detectorKey.Type() {
continue
}
if valStr == dupe {
ctx.Logger().V(2).Info(
"found exact duplicate",
)
return true
}
similarity := strutil.Similarity(valStr, dupe, metrics.NewLevenshtein())
// close enough
if similarity > similarityThreshold {
ctx.Logger().V(2).Info(
"found similar duplicate",
)
return true
}
}
return false
}
func (e *Engine) verificationOverlapWorker(ctx context.Context) {
var wgDetect sync.WaitGroup
// Reuse the same map and slice to avoid allocations.
const avgSecretsPerDetector = 8
detectorKeysWithResults := make(map[ahocorasick.DetectorKey]*ahocorasick.DetectorMatch, avgSecretsPerDetector)
chunkSecrets := make(map[chunkSecretKey]struct{}, avgSecretsPerDetector)
for chunk := range e.verificationOverlapChunksChan {
for _, detector := range chunk.detectors {
isFalsePositive := detectors.GetFalsePositiveCheck(detector.Detector)
// DO NOT VERIFY at this stage of the pipeline.
matchedBytes := detector.Matches()
for _, match := range matchedBytes {
ctx, cancel := context.WithTimeout(ctx, time.Second*2)
results, err := detector.FromData(ctx, false, match)
cancel()
if err != nil {
ctx.Logger().V(2).Error(
err, "error finding results in chunk during verification overlap",
"detector", detector.Key.Type().String(),
)
}
if len(results) == 0 {
continue
}
if _, ok := detectorKeysWithResults[detector.Key]; !ok {
detectorKeysWithResults[detector.Key] = detector
}
// If results filtration eliminates a rotated secret, then that rotation will never be reported. This
// problem can theoretically occur for any scan, but we've only actually seen it in practice during
// targeted scans. (The reason for this discrepancy is unclear.) The simplest fix is therefore to
// disable filtration for targeted scans, but if you're here because this problem surfaced for a
// non-targeted scan then we'll have to solve it correctly.
if chunk.chunk.SecretID == 0 {
results = e.filterResults(ctx, detector, results)
}
for _, res := range results {
var val []byte
if res.RawV2 != nil {
val = res.RawV2
} else {
val = res.Raw
}
// Use levenstein distance to determine if the secret is likely the same.
// Ex:
// - postman api key: PMAK-qnwfsLyRSyfCwfpHaQP1UzDhrgpWvHjbYzjpRCMshjt417zWcrzyHUArs7r
// - malicious detector "api key": qnwfsLyRSyfCwfpHaQP1UzDhrgpWvHjbYzjpRCMshjt417zWcrzyHUArs7r
key := chunkSecretKey{secret: string(val), detectorKey: detector.Key}
if _, ok := chunkSecrets[key]; ok {
continue
}
if likelyDuplicate(ctx, key, chunkSecrets) {
// This indicates that the same secret was found by multiple detectors.
// We should NOT VERIFY this chunk's data.
if e.verificationOverlapTracker != nil {
e.verificationOverlapTracker.increment()
}
res.SetVerificationError(errOverlap)
e.processResult(
ctx,
detectableChunk{
chunk: chunk.chunk,
detector: detector,
decoder: chunk.decoder,
wgDoneFn: wgDetect.Done,
},
res,
isFalsePositive,
)
// Remove the detector key from the list of detector keys with results.
// This is to ensure that the chunk is not reprocessed with verification enabled
// for this detector.
delete(detectorKeysWithResults, detector.Key)
}
chunkSecrets[key] = struct{}{}
}
}
}
for _, detector := range detectorKeysWithResults {
wgDetect.Add(1)
chunk.chunk.Verify = e.shouldVerifyChunk(chunk.chunk.Verify, detector, e.detectorVerificationOverrides)
e.detectableChunksChan <- detectableChunk{
chunk: chunk.chunk,
detector: detector,
decoder: chunk.decoder,
wgDoneFn: wgDetect.Done,
}
}
// Empty the dupes and detectors slice
for k := range chunkSecrets {
delete(chunkSecrets, k)
}
for k := range detectorKeysWithResults {
delete(detectorKeysWithResults, k)
}
chunk.verificationOverlapWgDoneFn()
}
wgDetect.Wait()
}
func (e *Engine) detectorWorker(ctx context.Context) {
for data := range e.detectableChunksChan {
start := time.Now()
e.detectChunk(ctx, data)
chunksDetectedLatency.Observe(float64(time.Since(start).Milliseconds()))
}
}
func (e *Engine) detectChunk(ctx context.Context, data detectableChunk) {
var start time.Time
if e.printAvgDetectorTime {
start = time.Now()
}
defer common.Recover(ctx)
ctx = context.WithValue(ctx, "detector", data.detector.Key.Loggable())
isFalsePositive := detectors.GetFalsePositiveCheck(data.detector.Detector)
var matchCount int
// To reduce the overhead of regex calls in the detector,
// we limit the amount of data passed to each detector.
// The matches field of the DetectorMatch struct contains the
// relevant portions of the chunk data that were matched.
// This avoids the need for additional regex processing on the entire chunk data.
matches := data.detector.Matches()
for _, matchBytes := range matches {
matchCount++
detectBytesPerMatch.Observe(float64(len(matchBytes)))
ctx, cancel := context.WithTimeout(ctx, detectionTimeout)
t := time.AfterFunc(detectionTimeout+1*time.Second, func() {
ctx.Logger().Error(nil, "a detector ignored the context timeout")
})
results, err := data.detector.Detector.FromData(ctx, data.chunk.Verify, matchBytes)
t.Stop()
cancel()
if err != nil {
ctx.Logger().Error(err, "error finding results in chunk")
continue
}
detectorExecutionCount.WithLabelValues(
data.detector.Type().String(),
strconv.Itoa(int(data.chunk.JobID)),
data.chunk.SourceName,
).Inc()
detectorExecutionDuration.WithLabelValues(
data.detector.Type().String(),
).Observe(float64(time.Since(start).Milliseconds()))
if e.printAvgDetectorTime && len(results) > 0 {
elapsed := time.Since(start)
detectorName := results[0].DetectorType.String()
avgTimeI, ok := e.metrics.detectorAvgTime.Load(detectorName)
var avgTime []time.Duration
if ok {
avgTime, ok = avgTimeI.([]time.Duration)
if !ok {
return
}
}
avgTime = append(avgTime, elapsed)
e.metrics.detectorAvgTime.Store(detectorName, avgTime)
}
// If results filtration eliminates a rotated secret, then that rotation will never be reported. This problem
// can theoretically occur for any scan, but we've only actually seen it in practice during targeted scans. (The
// reason for this discrepancy is unclear.) The simplest fix is therefore to disable filtration for targeted
// scans, but if you're here because this problem surfaced for a non-targeted scan then we'll have to solve it
// correctly.
if data.chunk.SecretID == 0 {
results = e.filterResults(ctx, data.detector, results)
}
for _, res := range results {
e.processResult(ctx, data, res, isFalsePositive)
}
}
matchesPerChunk.Observe(float64(matchCount))
data.wgDoneFn()
}
func (e *Engine) filterResults(
ctx context.Context,
detector *ahocorasick.DetectorMatch,
results []detectors.Result,
) []detectors.Result {
clean := detectors.CleanResults
ignoreConfig := false
if cleaner, ok := detector.Detector.(detectors.CustomResultsCleaner); ok {
clean = cleaner.CleanResults
ignoreConfig = cleaner.ShouldCleanResultsIrrespectiveOfConfiguration()
}
if e.filterUnverified || ignoreConfig {
results = clean(results)
}
if !e.retainFalsePositives {
results = detectors.FilterKnownFalsePositives(ctx, detector.Detector, results)
}
if e.filterEntropy != 0 {
results = detectors.FilterResultsWithEntropy(ctx, results, e.filterEntropy, e.retainFalsePositives)
}
return results
}
func (e *Engine) processResult(
ctx context.Context,
data detectableChunk,
res detectors.Result,
isFalsePositive func(detectors.Result) (bool, string),
) {
ignoreLinePresent := false
if SupportsLineNumbers(data.chunk.SourceType) {
copyChunk := data.chunk
copyMetaDataClone := proto.Clone(data.chunk.SourceMetadata)
if copyMetaData, ok := copyMetaDataClone.(*source_metadatapb.MetaData); ok {
copyChunk.SourceMetadata = copyMetaData
}
fragStart, mdLine, link := FragmentFirstLineAndLink(&copyChunk)
ignoreLinePresent = SetResultLineNumber(&copyChunk, &res, fragStart, mdLine)
if err := UpdateLink(ctx, copyChunk.SourceMetadata, link, *mdLine); err != nil {
ctx.Logger().Error(err, "error setting link")
return
}
data.chunk = copyChunk
}
if ignoreLinePresent {
return
}
secret := detectors.CopyMetadata(&data.chunk, res)
secret.DecoderType = data.decoder
if !res.Verified && res.Raw != nil {
isFp, _ := isFalsePositive(res)
secret.IsWordlistFalsePositive = isFp
}
e.results <- secret
}
func (e *Engine) notifierWorker(ctx context.Context) {
for result := range e.ResultsChan() {
startTime := time.Now()
// Filter unwanted results, based on `--results`.
if !result.Verified {
if result.VerificationError() != nil {
if !e.notifyUnknownResults {
// Skip results with verification errors.
continue
}
} else if !e.notifyUnverifiedResults {
// Skip unverified results.
continue
}
} else if !e.notifyVerifiedResults {
// Skip verified results.
// TODO: Is this a legitimate use case?
continue
}
atomic.AddUint32(&e.numFoundResults, 1)
// Dedupe results by comparing the detector type, raw result, and source metadata.
// We want to avoid duplicate results with different decoder types, but we also
// want to include duplicate results with the same decoder type.
// Duplicate results with the same decoder type SHOULD have their own entry in the
// results list, this would happen if the same secret is found multiple times.
// Note: If the source type is postman, we dedupe the results regardless of decoder type.
key := fmt.Sprintf("%s%s%s%+v", result.DetectorType.String(), result.Raw, result.RawV2, result.SourceMetadata)
if val, ok := e.dedupeCache.Get(key); ok && (val != result.DecoderType ||
result.SourceType == sourcespb.SourceType_SOURCE_TYPE_POSTMAN) {
continue
}
e.dedupeCache.Add(key, result.DecoderType)
if result.Verified {
atomic.AddUint64(&e.metrics.VerifiedSecretsFound, 1)
} else {
atomic.AddUint64(&e.metrics.UnverifiedSecretsFound, 1)
}
if err := e.dispatcher.Dispatch(ctx, result); err != nil {
ctx.Logger().Error(err, "error notifying result")
}
chunksNotifiedLatency.Observe(float64(time.Since(startTime).Milliseconds()))
}
}
// SupportsLineNumbers determines if a line number can be found for a source type.
func SupportsLineNumbers(sourceType sourcespb.SourceType) bool {
switch sourceType {
case sourcespb.SourceType_SOURCE_TYPE_GIT,
sourcespb.SourceType_SOURCE_TYPE_GITHUB,
sourcespb.SourceType_SOURCE_TYPE_GITLAB,
sourcespb.SourceType_SOURCE_TYPE_BITBUCKET,
sourcespb.SourceType_SOURCE_TYPE_GERRIT,
sourcespb.SourceType_SOURCE_TYPE_GITHUB_UNAUTHENTICATED_ORG,
sourcespb.SourceType_SOURCE_TYPE_PUBLIC_GIT,
sourcespb.SourceType_SOURCE_TYPE_FILESYSTEM,
sourcespb.SourceType_SOURCE_TYPE_AZURE_REPOS:
return true
default:
return false
}
}
// FragmentLineOffset sets the line number for a provided source chunk with a given detector result.
func FragmentLineOffset(chunk *sources.Chunk, result *detectors.Result) (int64, bool) {
before, after, found := bytes.Cut(chunk.Data, result.Raw)
if !found {
return 0, false
}
lineNumber := int64(bytes.Count(before, []byte("\n")))
// If the line contains the ignore tag, we should ignore the result.
endLine := bytes.Index(after, []byte("\n"))
if endLine == -1 {
endLine = len(after)
}
if bytes.Contains(after[:endLine], []byte(ignoreTag)) {
return lineNumber, true
}
return lineNumber, false
}
// FragmentFirstLineAndLink extracts the first line number and the link from the chunk metadata.
// It returns:
// - The first line number of the fragment.
// - A pointer to the line number, facilitating direct updates.
// - The link associated with the fragment. This link may be updated in the chunk metadata
// if there's a change in the line number.
func FragmentFirstLineAndLink(chunk *sources.Chunk) (int64, *int64, string) {
if chunk.SourceMetadata == nil {
return 0, nil, ""
}
var (
fragmentStart *int64
link string
)
switch metadata := chunk.SourceMetadata.GetData().(type) {
case *source_metadatapb.MetaData_Git:
fragmentStart = &metadata.Git.Line
case *source_metadatapb.MetaData_Github:
fragmentStart = &metadata.Github.Line
link = metadata.Github.Link
case *source_metadatapb.MetaData_Gitlab:
fragmentStart = &metadata.Gitlab.Line
link = metadata.Gitlab.Link
case *source_metadatapb.MetaData_Bitbucket:
fragmentStart = &metadata.Bitbucket.Line
link = metadata.Bitbucket.Link
case *source_metadatapb.MetaData_Gerrit:
fragmentStart = &metadata.Gerrit.Line
case *source_metadatapb.MetaData_Filesystem:
fragmentStart = &metadata.Filesystem.Line
link = metadata.Filesystem.Link
case *source_metadatapb.MetaData_AzureRepos:
fragmentStart = &metadata.AzureRepos.Line
link = metadata.AzureRepos.Link
default:
return 1, nil, ""
}
// Ensure we maintain 1-based line indexing if fragmentStart is not set or is 0.
if *fragmentStart == 0 {
*fragmentStart = 1
}
return *fragmentStart, fragmentStart, link
}
// SetResultLineNumber sets the line number in the provided result.
func SetResultLineNumber(chunk *sources.Chunk, result *detectors.Result, fragStart int64, mdLine *int64) bool {
offset, skip := FragmentLineOffset(chunk, result)
*mdLine = fragStart + offset
return skip
}
// UpdateLink updates the link of the provided source metadata.
func UpdateLink(ctx context.Context, metadata *source_metadatapb.MetaData, link string, line int64) error {
if metadata == nil {
return fmt.Errorf("metadata is nil when setting the link")
}
if link == "" {
ctx.Logger().V(4).Info("link is empty, skipping update")
return nil
}
newLink := giturl.UpdateLinkLineNumber(ctx, link, line)
switch meta := metadata.GetData().(type) {
case *source_metadatapb.MetaData_Github:
meta.Github.Link = newLink
case *source_metadatapb.MetaData_Gitlab:
meta.Gitlab.Link = newLink
case *source_metadatapb.MetaData_Bitbucket:
meta.Bitbucket.Link = newLink
case *source_metadatapb.MetaData_Filesystem:
meta.Filesystem.Link = newLink
case *source_metadatapb.MetaData_AzureRepos:
meta.AzureRepos.Link = newLink
default:
return fmt.Errorf("unsupported metadata type")
}
return nil
}