rust-clippy/clippy_lints/src/use_self.rs

243 lines
8.2 KiB
Rust

// Copyright 2014-2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::rustc::hir::intravisit::{walk_path, walk_ty, NestedVisitorMap, Visitor};
use crate::rustc::hir::*;
use crate::rustc::lint::{LateContext, LateLintPass, LintArray, LintPass};
use crate::rustc::ty;
use crate::rustc::{declare_tool_lint, lint_array};
use crate::rustc_errors::Applicability;
use crate::syntax::ast::NodeId;
use crate::syntax_pos::symbol::keywords::SelfUpper;
use crate::utils::{in_macro, span_lint_and_sugg};
use if_chain::if_chain;
/// **What it does:** Checks for unnecessary repetition of structure name when a
/// replacement with `Self` is applicable.
///
/// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct
/// name
/// feels inconsistent.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Foo {
/// Foo {}
/// }
/// }
/// ```
/// could be
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Self {
/// Self {}
/// }
/// }
/// ```
declare_clippy_lint! {
pub USE_SELF,
pedantic,
"Unnecessary structure name repetition whereas `Self` is applicable"
}
#[derive(Copy, Clone, Default)]
pub struct UseSelf;
impl LintPass for UseSelf {
fn get_lints(&self) -> LintArray {
lint_array!(USE_SELF)
}
}
const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
fn span_use_self_lint(cx: &LateContext<'_, '_>, path: &Path) {
span_lint_and_sugg(
cx,
USE_SELF,
path.span,
"unnecessary structure name repetition",
"use the applicable keyword",
"Self".to_owned(),
Applicability::MachineApplicable,
);
}
struct TraitImplTyVisitor<'a, 'tcx: 'a> {
item_type: ty::Ty<'tcx>,
cx: &'a LateContext<'a, 'tcx>,
trait_type_walker: ty::walk::TypeWalker<'tcx>,
impl_type_walker: ty::walk::TypeWalker<'tcx>,
}
impl<'a, 'tcx> Visitor<'tcx> for TraitImplTyVisitor<'a, 'tcx> {
fn visit_ty(&mut self, t: &'tcx Ty) {
let trait_ty = self.trait_type_walker.next();
let impl_ty = self.impl_type_walker.next();
if let TyKind::Path(QPath::Resolved(_, path)) = &t.node {
// The implementation and trait types don't match which means that
// the concrete type was specified by the implementation
if impl_ty != trait_ty {
if let Some(impl_ty) = impl_ty {
if self.item_type == impl_ty {
let is_self_ty = if let def::Def::SelfTy(..) = path.def {
true
} else {
false
};
if !is_self_ty {
span_use_self_lint(self.cx, path);
}
}
}
}
}
walk_ty(self, t)
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
fn check_trait_method_impl_decl<'a, 'tcx: 'a>(
cx: &'a LateContext<'a, 'tcx>,
item_type: ty::Ty<'tcx>,
impl_item: &ImplItem,
impl_decl: &'tcx FnDecl,
impl_trait_ref: &ty::TraitRef<'_>,
) {
let trait_method = cx
.tcx
.associated_items(impl_trait_ref.def_id)
.find(|assoc_item| {
assoc_item.kind == ty::AssociatedKind::Method
&& cx
.tcx
.hygienic_eq(impl_item.ident, assoc_item.ident, impl_trait_ref.def_id)
})
.expect("impl method matches a trait method");
let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
let trait_method_sig = cx.tcx.erase_late_bound_regions(&trait_method_sig);
let impl_method_def_id = cx.tcx.hir().local_def_id(impl_item.id);
let impl_method_sig = cx.tcx.fn_sig(impl_method_def_id);
let impl_method_sig = cx.tcx.erase_late_bound_regions(&impl_method_sig);
let output_ty = if let FunctionRetTy::Return(ty) = &impl_decl.output {
Some(&**ty)
} else {
None
};
// `impl_decl_ty` (of type `hir::Ty`) represents the type declared in the signature.
// `impl_ty` (of type `ty:TyS`) is the concrete type that the compiler has determined for
// that declaration. We use `impl_decl_ty` to see if the type was declared as `Self`
// and use `impl_ty` to check its concrete type.
for (impl_decl_ty, (impl_ty, trait_ty)) in impl_decl.inputs.iter().chain(output_ty).zip(
impl_method_sig
.inputs_and_output
.iter()
.zip(trait_method_sig.inputs_and_output),
) {
let mut visitor = TraitImplTyVisitor {
cx,
item_type,
trait_type_walker: trait_ty.walk(),
impl_type_walker: impl_ty.walk(),
};
visitor.visit_ty(&impl_decl_ty);
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UseSelf {
fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
if in_macro(item.span) {
return;
}
if_chain! {
if let ItemKind::Impl(.., ref item_type, ref refs) = item.node;
if let TyKind::Path(QPath::Resolved(_, ref item_path)) = item_type.node;
then {
let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
let should_check = if let Some(ref params) = *parameters {
!params.parenthesized && !params.args.iter().any(|arg| match arg {
GenericArg::Lifetime(_) => true,
GenericArg::Type(_) => false,
})
} else {
true
};
if should_check {
let visitor = &mut UseSelfVisitor {
item_path,
cx,
};
let impl_def_id = cx.tcx.hir().local_def_id(item.id);
let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id);
if let Some(impl_trait_ref) = impl_trait_ref {
for impl_item_ref in refs {
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
if let ImplItemKind::Method(MethodSig{ decl: impl_decl, .. }, impl_body_id)
= &impl_item.node {
let item_type = cx.tcx.type_of(impl_def_id);
check_trait_method_impl_decl(cx, item_type, impl_item, impl_decl, &impl_trait_ref);
let body = cx.tcx.hir().body(*impl_body_id);
visitor.visit_body(body);
} else {
visitor.visit_impl_item(impl_item);
}
}
} else {
for impl_item_ref in refs {
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
visitor.visit_impl_item(impl_item);
}
}
}
}
}
}
}
struct UseSelfVisitor<'a, 'tcx: 'a> {
item_path: &'a Path,
cx: &'a LateContext<'a, 'tcx>,
}
impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> {
fn visit_path(&mut self, path: &'tcx Path, _id: HirId) {
if self.item_path.def == path.def && path.segments.last().expect(SEGMENTS_MSG).ident.name != SelfUpper.name() {
span_use_self_lint(self.cx, path);
}
walk_path(self, path);
}
fn visit_use(&mut self, _path: &'tcx Path, _id: NodeId, _hir_id: HirId) {
// Don't check use statements
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.cx.tcx.hir())
}
}