rust-clippy/clippy_lints/src/use_self.rs
2019-08-01 07:09:57 +02:00

270 lines
9.5 KiB
Rust

use if_chain::if_chain;
use rustc::hir;
use rustc::hir::def::{CtorKind, DefKind, Res};
use rustc::hir::intravisit::{walk_item, walk_path, walk_ty, NestedVisitorMap, Visitor};
use rustc::hir::*;
use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass};
use rustc::ty;
use rustc::ty::{DefIdTree, Ty};
use rustc::{declare_lint_pass, declare_tool_lint};
use rustc_errors::Applicability;
use syntax_pos::symbol::kw;
use crate::utils::span_lint_and_sugg;
declare_clippy_lint! {
/// **What it does:** Checks for unnecessary repetition of structure name when a
/// replacement with `Self` is applicable.
///
/// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct
/// name
/// feels inconsistent.
///
/// **Known problems:**
/// - False positive when using associated types (#2843)
/// - False positives in some situations when using generics (#3410)
///
/// **Example:**
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Foo {
/// Foo {}
/// }
/// }
/// ```
/// could be
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Self {
/// Self {}
/// }
/// }
/// ```
pub USE_SELF,
pedantic,
"Unnecessary structure name repetition whereas `Self` is applicable"
}
declare_lint_pass!(UseSelf => [USE_SELF]);
const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
fn span_use_self_lint(cx: &LateContext<'_, '_>, path: &Path, last_segment: Option<&PathSegment>) {
let last_segment = last_segment.unwrap_or_else(|| path.segments.last().expect(SEGMENTS_MSG));
// Path segments only include actual path, no methods or fields.
let last_path_span = last_segment.ident.span;
// Only take path up to the end of last_path_span.
let span = path.span.with_hi(last_path_span.hi());
span_lint_and_sugg(
cx,
USE_SELF,
span,
"unnecessary structure name repetition",
"use the applicable keyword",
"Self".to_owned(),
Applicability::MachineApplicable,
);
}
struct TraitImplTyVisitor<'a, 'tcx> {
item_type: Ty<'tcx>,
cx: &'a LateContext<'a, 'tcx>,
trait_type_walker: ty::walk::TypeWalker<'tcx>,
impl_type_walker: ty::walk::TypeWalker<'tcx>,
}
impl<'a, 'tcx> Visitor<'tcx> for TraitImplTyVisitor<'a, 'tcx> {
fn visit_ty(&mut self, t: &'tcx hir::Ty) {
let trait_ty = self.trait_type_walker.next();
let impl_ty = self.impl_type_walker.next();
if_chain! {
if let TyKind::Path(QPath::Resolved(_, path)) = &t.node;
// The implementation and trait types don't match which means that
// the concrete type was specified by the implementation
if impl_ty != trait_ty;
if let Some(impl_ty) = impl_ty;
if self.item_type == impl_ty;
then {
match path.res {
def::Res::SelfTy(..) => {},
_ => span_use_self_lint(self.cx, path, None)
}
}
}
walk_ty(self, t)
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
fn check_trait_method_impl_decl<'a, 'tcx>(
cx: &'a LateContext<'a, 'tcx>,
item_type: Ty<'tcx>,
impl_item: &ImplItem,
impl_decl: &'tcx FnDecl,
impl_trait_ref: &ty::TraitRef<'_>,
) {
let trait_method = cx
.tcx
.associated_items(impl_trait_ref.def_id)
.find(|assoc_item| {
assoc_item.kind == ty::AssocKind::Method
&& cx
.tcx
.hygienic_eq(impl_item.ident, assoc_item.ident, impl_trait_ref.def_id)
})
.expect("impl method matches a trait method");
let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
let trait_method_sig = cx.tcx.erase_late_bound_regions(&trait_method_sig);
let impl_method_def_id = cx.tcx.hir().local_def_id(impl_item.hir_id);
let impl_method_sig = cx.tcx.fn_sig(impl_method_def_id);
let impl_method_sig = cx.tcx.erase_late_bound_regions(&impl_method_sig);
let output_ty = if let FunctionRetTy::Return(ty) = &impl_decl.output {
Some(&**ty)
} else {
None
};
// `impl_decl_ty` (of type `hir::Ty`) represents the type declared in the signature.
// `impl_ty` (of type `ty:TyS`) is the concrete type that the compiler has determined for
// that declaration. We use `impl_decl_ty` to see if the type was declared as `Self`
// and use `impl_ty` to check its concrete type.
for (impl_decl_ty, (impl_ty, trait_ty)) in impl_decl.inputs.iter().chain(output_ty).zip(
impl_method_sig
.inputs_and_output
.iter()
.zip(trait_method_sig.inputs_and_output),
) {
let mut visitor = TraitImplTyVisitor {
cx,
item_type,
trait_type_walker: trait_ty.walk(),
impl_type_walker: impl_ty.walk(),
};
visitor.visit_ty(&impl_decl_ty);
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UseSelf {
fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
if in_external_macro(cx.sess(), item.span) {
return;
}
if_chain! {
if let ItemKind::Impl(.., ref item_type, ref refs) = item.node;
if let TyKind::Path(QPath::Resolved(_, ref item_path)) = item_type.node;
then {
let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
let should_check = if let Some(ref params) = *parameters {
!params.parenthesized && !params.args.iter().any(|arg| match arg {
GenericArg::Lifetime(_) => true,
_ => false,
})
} else {
true
};
if should_check {
let visitor = &mut UseSelfVisitor {
item_path,
cx,
};
let impl_def_id = cx.tcx.hir().local_def_id(item.hir_id);
let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id);
if let Some(impl_trait_ref) = impl_trait_ref {
for impl_item_ref in refs {
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
if let ImplItemKind::Method(MethodSig{ decl: impl_decl, .. }, impl_body_id)
= &impl_item.node {
let item_type = cx.tcx.type_of(impl_def_id);
check_trait_method_impl_decl(cx, item_type, impl_item, impl_decl, &impl_trait_ref);
let body = cx.tcx.hir().body(*impl_body_id);
visitor.visit_body(body);
} else {
visitor.visit_impl_item(impl_item);
}
}
} else {
for impl_item_ref in refs {
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
visitor.visit_impl_item(impl_item);
}
}
}
}
}
}
}
struct UseSelfVisitor<'a, 'tcx> {
item_path: &'a Path,
cx: &'a LateContext<'a, 'tcx>,
}
impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> {
fn visit_path(&mut self, path: &'tcx Path, _id: HirId) {
if path.segments.len() >= 2 {
let last_but_one = &path.segments[path.segments.len() - 2];
if last_but_one.ident.name != kw::SelfUpper {
let enum_def_id = match path.res {
Res::Def(DefKind::Variant, variant_def_id) => self.cx.tcx.parent(variant_def_id),
Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), ctor_def_id) => {
let variant_def_id = self.cx.tcx.parent(ctor_def_id);
variant_def_id.and_then(|def_id| self.cx.tcx.parent(def_id))
},
_ => None,
};
if self.item_path.res.opt_def_id() == enum_def_id {
span_use_self_lint(self.cx, path, Some(last_but_one));
}
}
}
if path.segments.last().expect(SEGMENTS_MSG).ident.name != kw::SelfUpper {
if self.item_path.res == path.res {
span_use_self_lint(self.cx, path, None);
} else if let Res::Def(DefKind::Ctor(def::CtorOf::Struct, CtorKind::Fn), ctor_def_id) = path.res {
if self.item_path.res.opt_def_id() == self.cx.tcx.parent(ctor_def_id) {
span_use_self_lint(self.cx, path, None);
}
}
}
walk_path(self, path);
}
fn visit_item(&mut self, item: &'tcx Item) {
match item.node {
ItemKind::Use(..)
| ItemKind::Static(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
| ItemKind::Union(..)
| ItemKind::Impl(..)
| ItemKind::Fn(..) => {
// Don't check statements that shadow `Self` or where `Self` can't be used
},
_ => walk_item(self, item),
}
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.cx.tcx.hir())
}
}