rust-clippy/clippy_lints/src/checked_conversions.rs
Koichi ITO ae0216d557 Use the traits added to the Rust 2021 Edition prelude
Follow up https://github.com/rust-lang/rust/pull/96861.

This PR uses the traits added to the Rust 2021 Edition prelude.

> The `TryInto`, `TryFrom` and `FromIterator` traits are now part of the prelude.

https://doc.rust-lang.org/edition-guide/rust-2021/prelude.html
2022-05-12 00:38:11 +09:00

357 lines
11 KiB
Rust

//! lint on manually implemented checked conversions that could be transformed into `try_from`
use clippy_utils::diagnostics::span_lint_and_sugg;
use clippy_utils::source::snippet_with_applicability;
use clippy_utils::{meets_msrv, msrvs, SpanlessEq};
use if_chain::if_chain;
use rustc_ast::ast::LitKind;
use rustc_errors::Applicability;
use rustc_hir::{BinOp, BinOpKind, Expr, ExprKind, QPath, TyKind};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::lint::in_external_macro;
use rustc_semver::RustcVersion;
use rustc_session::{declare_tool_lint, impl_lint_pass};
declare_clippy_lint! {
/// ### What it does
/// Checks for explicit bounds checking when casting.
///
/// ### Why is this bad?
/// Reduces the readability of statements & is error prone.
///
/// ### Example
/// ```rust
/// # let foo: u32 = 5;
/// # let _ =
/// foo <= i32::MAX as u32
/// # ;
/// ```
///
/// Could be written:
///
/// ```rust
/// # let foo = 1;
/// # let _ =
/// i32::try_from(foo).is_ok()
/// # ;
/// ```
#[clippy::version = "1.37.0"]
pub CHECKED_CONVERSIONS,
pedantic,
"`try_from` could replace manual bounds checking when casting"
}
pub struct CheckedConversions {
msrv: Option<RustcVersion>,
}
impl CheckedConversions {
#[must_use]
pub fn new(msrv: Option<RustcVersion>) -> Self {
Self { msrv }
}
}
impl_lint_pass!(CheckedConversions => [CHECKED_CONVERSIONS]);
impl<'tcx> LateLintPass<'tcx> for CheckedConversions {
fn check_expr(&mut self, cx: &LateContext<'_>, item: &Expr<'_>) {
if !meets_msrv(self.msrv, msrvs::TRY_FROM) {
return;
}
let result = if_chain! {
if !in_external_macro(cx.sess(), item.span);
if let ExprKind::Binary(op, left, right) = &item.kind;
then {
match op.node {
BinOpKind::Ge | BinOpKind::Le => single_check(item),
BinOpKind::And => double_check(cx, left, right),
_ => None,
}
} else {
None
}
};
if let Some(cv) = result {
if let Some(to_type) = cv.to_type {
let mut applicability = Applicability::MachineApplicable;
let snippet = snippet_with_applicability(cx, cv.expr_to_cast.span, "_", &mut applicability);
span_lint_and_sugg(
cx,
CHECKED_CONVERSIONS,
item.span,
"checked cast can be simplified",
"try",
format!("{}::try_from({}).is_ok()", to_type, snippet),
applicability,
);
}
}
}
extract_msrv_attr!(LateContext);
}
/// Searches for a single check from unsigned to _ is done
/// todo: check for case signed -> larger unsigned == only x >= 0
fn single_check<'tcx>(expr: &'tcx Expr<'tcx>) -> Option<Conversion<'tcx>> {
check_upper_bound(expr).filter(|cv| cv.cvt == ConversionType::FromUnsigned)
}
/// Searches for a combination of upper & lower bound checks
fn double_check<'a>(cx: &LateContext<'_>, left: &'a Expr<'_>, right: &'a Expr<'_>) -> Option<Conversion<'a>> {
let upper_lower = |l, r| {
let upper = check_upper_bound(l);
let lower = check_lower_bound(r);
upper.zip(lower).and_then(|(l, r)| l.combine(r, cx))
};
upper_lower(left, right).or_else(|| upper_lower(right, left))
}
/// Contains the result of a tried conversion check
#[derive(Clone, Debug)]
struct Conversion<'a> {
cvt: ConversionType,
expr_to_cast: &'a Expr<'a>,
to_type: Option<&'a str>,
}
/// The kind of conversion that is checked
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum ConversionType {
SignedToUnsigned,
SignedToSigned,
FromUnsigned,
}
impl<'a> Conversion<'a> {
/// Combine multiple conversions if the are compatible
pub fn combine(self, other: Self, cx: &LateContext<'_>) -> Option<Conversion<'a>> {
if self.is_compatible(&other, cx) {
// Prefer a Conversion that contains a type-constraint
Some(if self.to_type.is_some() { self } else { other })
} else {
None
}
}
/// Checks if two conversions are compatible
/// same type of conversion, same 'castee' and same 'to type'
pub fn is_compatible(&self, other: &Self, cx: &LateContext<'_>) -> bool {
(self.cvt == other.cvt)
&& (SpanlessEq::new(cx).eq_expr(self.expr_to_cast, other.expr_to_cast))
&& (self.has_compatible_to_type(other))
}
/// Checks if the to-type is the same (if there is a type constraint)
fn has_compatible_to_type(&self, other: &Self) -> bool {
match (self.to_type, other.to_type) {
(Some(l), Some(r)) => l == r,
_ => true,
}
}
/// Try to construct a new conversion if the conversion type is valid
fn try_new(expr_to_cast: &'a Expr<'_>, from_type: &str, to_type: &'a str) -> Option<Conversion<'a>> {
ConversionType::try_new(from_type, to_type).map(|cvt| Conversion {
cvt,
expr_to_cast,
to_type: Some(to_type),
})
}
/// Construct a new conversion without type constraint
fn new_any(expr_to_cast: &'a Expr<'_>) -> Conversion<'a> {
Conversion {
cvt: ConversionType::SignedToUnsigned,
expr_to_cast,
to_type: None,
}
}
}
impl ConversionType {
/// Creates a conversion type if the type is allowed & conversion is valid
#[must_use]
fn try_new(from: &str, to: &str) -> Option<Self> {
if UINTS.contains(&from) {
Some(Self::FromUnsigned)
} else if SINTS.contains(&from) {
if UINTS.contains(&to) {
Some(Self::SignedToUnsigned)
} else if SINTS.contains(&to) {
Some(Self::SignedToSigned)
} else {
None
}
} else {
None
}
}
}
/// Check for `expr <= (to_type::MAX as from_type)`
fn check_upper_bound<'tcx>(expr: &'tcx Expr<'tcx>) -> Option<Conversion<'tcx>> {
if_chain! {
if let ExprKind::Binary(ref op, left, right) = &expr.kind;
if let Some((candidate, check)) = normalize_le_ge(op, left, right);
if let Some((from, to)) = get_types_from_cast(check, INTS, "max_value", "MAX");
then {
Conversion::try_new(candidate, from, to)
} else {
None
}
}
}
/// Check for `expr >= 0|(to_type::MIN as from_type)`
fn check_lower_bound<'tcx>(expr: &'tcx Expr<'tcx>) -> Option<Conversion<'tcx>> {
fn check_function<'a>(candidate: &'a Expr<'a>, check: &'a Expr<'a>) -> Option<Conversion<'a>> {
(check_lower_bound_zero(candidate, check)).or_else(|| (check_lower_bound_min(candidate, check)))
}
// First of we need a binary containing the expression & the cast
if let ExprKind::Binary(ref op, left, right) = &expr.kind {
normalize_le_ge(op, right, left).and_then(|(l, r)| check_function(l, r))
} else {
None
}
}
/// Check for `expr >= 0`
fn check_lower_bound_zero<'a>(candidate: &'a Expr<'_>, check: &'a Expr<'_>) -> Option<Conversion<'a>> {
if_chain! {
if let ExprKind::Lit(ref lit) = &check.kind;
if let LitKind::Int(0, _) = &lit.node;
then {
Some(Conversion::new_any(candidate))
} else {
None
}
}
}
/// Check for `expr >= (to_type::MIN as from_type)`
fn check_lower_bound_min<'a>(candidate: &'a Expr<'_>, check: &'a Expr<'_>) -> Option<Conversion<'a>> {
if let Some((from, to)) = get_types_from_cast(check, SINTS, "min_value", "MIN") {
Conversion::try_new(candidate, from, to)
} else {
None
}
}
/// Tries to extract the from- and to-type from a cast expression
fn get_types_from_cast<'a>(
expr: &'a Expr<'_>,
types: &'a [&str],
func: &'a str,
assoc_const: &'a str,
) -> Option<(&'a str, &'a str)> {
// `to_type::max_value() as from_type`
// or `to_type::MAX as from_type`
let call_from_cast: Option<(&Expr<'_>, &str)> = if_chain! {
// to_type::max_value(), from_type
if let ExprKind::Cast(limit, from_type) = &expr.kind;
if let TyKind::Path(ref from_type_path) = &from_type.kind;
if let Some(from_sym) = int_ty_to_sym(from_type_path);
then {
Some((limit, from_sym))
} else {
None
}
};
// `from_type::from(to_type::max_value())`
let limit_from: Option<(&Expr<'_>, &str)> = call_from_cast.or_else(|| {
if_chain! {
// `from_type::from, to_type::max_value()`
if let ExprKind::Call(from_func, args) = &expr.kind;
// `to_type::max_value()`
if args.len() == 1;
if let limit = &args[0];
// `from_type::from`
if let ExprKind::Path(ref path) = &from_func.kind;
if let Some(from_sym) = get_implementing_type(path, INTS, "from");
then {
Some((limit, from_sym))
} else {
None
}
}
});
if let Some((limit, from_type)) = limit_from {
match limit.kind {
// `from_type::from(_)`
ExprKind::Call(path, _) => {
if let ExprKind::Path(ref path) = path.kind {
// `to_type`
if let Some(to_type) = get_implementing_type(path, types, func) {
return Some((from_type, to_type));
}
}
},
// `to_type::MAX`
ExprKind::Path(ref path) => {
if let Some(to_type) = get_implementing_type(path, types, assoc_const) {
return Some((from_type, to_type));
}
},
_ => {},
}
};
None
}
/// Gets the type which implements the called function
fn get_implementing_type<'a>(path: &QPath<'_>, candidates: &'a [&str], function: &str) -> Option<&'a str> {
if_chain! {
if let QPath::TypeRelative(ty, path) = &path;
if path.ident.name.as_str() == function;
if let TyKind::Path(QPath::Resolved(None, tp)) = &ty.kind;
if let [int] = &*tp.segments;
then {
let name = int.ident.name.as_str();
candidates.iter().find(|c| &name == *c).copied()
} else {
None
}
}
}
/// Gets the type as a string, if it is a supported integer
fn int_ty_to_sym<'tcx>(path: &QPath<'_>) -> Option<&'tcx str> {
if_chain! {
if let QPath::Resolved(_, path) = *path;
if let [ty] = &*path.segments;
then {
let name = ty.ident.name.as_str();
INTS.iter().find(|c| &name == *c).copied()
} else {
None
}
}
}
/// Will return the expressions as if they were expr1 <= expr2
fn normalize_le_ge<'a>(op: &BinOp, left: &'a Expr<'a>, right: &'a Expr<'a>) -> Option<(&'a Expr<'a>, &'a Expr<'a>)> {
match op.node {
BinOpKind::Le => Some((left, right)),
BinOpKind::Ge => Some((right, left)),
_ => None,
}
}
// Constants
const UINTS: &[&str] = &["u8", "u16", "u32", "u64", "usize"];
const SINTS: &[&str] = &["i8", "i16", "i32", "i64", "isize"];
const INTS: &[&str] = &["u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", "isize"];