rust-clippy/tests/ui/default_numeric_fallback.rs

135 lines
3.6 KiB
Rust

#![warn(clippy::default_numeric_fallback)]
#![allow(unused)]
#![allow(clippy::never_loop)]
#![allow(clippy::no_effect)]
#![allow(clippy::unnecessary_operation)]
mod basic_expr {
fn test() {
// Should lint unsuffixed literals typed `i32`.
let x = 22;
let x = [1, 2, 3];
let x = if true { (1, 2) } else { (3, 4) };
let x = match 1 {
1 => 1,
_ => 2,
};
// Should lint unsuffixed literals typed `f64`.
let x = 0.12;
// Should NOT lint suffixed literals.
let x = 22_i32;
let x = 0.12_f64;
// Should NOT lint literals in init expr if `Local` has a type annotation.
let x: f64 = 0.1;
let x: [i32; 3] = [1, 2, 3];
let x: (i32, i32) = if true { (1, 2) } else { (3, 4) };
let x: _ = 1;
}
}
mod nested_local {
fn test() {
let x: _ = {
// Should lint this because this literal is not bound to any types.
let y = 1;
// Should NOT lint this because this literal is bound to `_` of outer `Local`.
1
};
let x: _ = if true {
// Should lint this because this literal is not bound to any types.
let y = 1;
// Should NOT lint this because this literal is bound to `_` of outer `Local`.
1
} else {
// Should lint this because this literal is not bound to any types.
let y = 1;
// Should NOT lint this because this literal is bound to `_` of outer `Local`.
2
};
}
}
mod function_def {
fn ret_i32() -> i32 {
// Even though the output type is specified,
// this unsuffixed literal is linted to reduce heuristics and keep codebase simple.
1
}
fn test() {
// Should lint this because return type is inferred to `i32` and NOT bound to a concrete
// type.
let f = || -> _ { 1 };
// Even though the output type is specified,
// this unsuffixed literal is linted to reduce heuristics and keep codebase simple.
let f = || -> i32 { 1 };
}
}
mod function_calls {
fn concrete_arg(x: i32) {}
fn generic_arg<T>(t: T) {}
fn test() {
// Should NOT lint this because the argument type is bound to a concrete type.
concrete_arg(1);
// Should lint this because the argument type is inferred to `i32` and NOT bound to a concrete type.
generic_arg(1);
// Should lint this because the argument type is inferred to `i32` and NOT bound to a concrete type.
let x: _ = generic_arg(1);
}
}
mod struct_ctor {
struct ConcreteStruct {
x: i32,
}
struct GenericStruct<T> {
x: T,
}
fn test() {
// Should NOT lint this because the field type is bound to a concrete type.
ConcreteStruct { x: 1 };
// Should lint this because the field type is inferred to `i32` and NOT bound to a concrete type.
GenericStruct { x: 1 };
// Should lint this because the field type is inferred to `i32` and NOT bound to a concrete type.
let _ = GenericStruct { x: 1 };
}
}
mod method_calls {
struct StructForMethodCallTest {}
impl StructForMethodCallTest {
fn concrete_arg(&self, x: i32) {}
fn generic_arg<T>(&self, t: T) {}
}
fn test() {
let s = StructForMethodCallTest {};
// Should NOT lint this because the argument type is bound to a concrete type.
s.concrete_arg(1);
// Should lint this because the argument type is bound to a concrete type.
s.generic_arg(1);
}
}
fn main() {}