mirror of
https://github.com/rust-lang/rust-clippy
synced 2025-01-02 08:19:11 +00:00
cec1e8f74e
The std equivalent works exactly the same.
653 lines
23 KiB
Rust
653 lines
23 KiB
Rust
use if_chain::if_chain;
|
||
use rustc::ty;
|
||
use rustc_ast::ast::LitKind;
|
||
use rustc_errors::Applicability;
|
||
use rustc_hir::intravisit::FnKind;
|
||
use rustc_hir::{
|
||
def, BinOpKind, BindingAnnotation, Body, Expr, ExprKind, FnDecl, HirId, Mutability, PatKind, Stmt, StmtKind, Ty,
|
||
TyKind, UnOp,
|
||
};
|
||
use rustc_lint::{LateContext, LateLintPass};
|
||
use rustc_session::{declare_lint_pass, declare_tool_lint};
|
||
use rustc_span::source_map::{ExpnKind, Span};
|
||
|
||
use crate::consts::{constant, Constant};
|
||
use crate::utils::sugg::Sugg;
|
||
use crate::utils::{
|
||
get_item_name, get_parent_expr, implements_trait, in_constant, is_integer_const, iter_input_pats,
|
||
last_path_segment, match_qpath, match_trait_method, paths, snippet, snippet_opt, span_lint, span_lint_and_sugg,
|
||
span_lint_and_then, span_lint_hir_and_then, walk_ptrs_ty, SpanlessEq,
|
||
};
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Checks for function arguments and let bindings denoted as
|
||
/// `ref`.
|
||
///
|
||
/// **Why is this bad?** The `ref` declaration makes the function take an owned
|
||
/// value, but turns the argument into a reference (which means that the value
|
||
/// is destroyed when exiting the function). This adds not much value: either
|
||
/// take a reference type, or take an owned value and create references in the
|
||
/// body.
|
||
///
|
||
/// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The
|
||
/// type of `x` is more obvious with the former.
|
||
///
|
||
/// **Known problems:** If the argument is dereferenced within the function,
|
||
/// removing the `ref` will lead to errors. This can be fixed by removing the
|
||
/// dereferences, e.g., changing `*x` to `x` within the function.
|
||
///
|
||
/// **Example:**
|
||
/// ```rust
|
||
/// fn foo(ref x: u8) -> bool {
|
||
/// true
|
||
/// }
|
||
/// ```
|
||
pub TOPLEVEL_REF_ARG,
|
||
style,
|
||
"an entire binding declared as `ref`, in a function argument or a `let` statement"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Checks for comparisons to NaN.
|
||
///
|
||
/// **Why is this bad?** NaN does not compare meaningfully to anything – not
|
||
/// even itself – so those comparisons are simply wrong.
|
||
///
|
||
/// **Known problems:** None.
|
||
///
|
||
/// **Example:**
|
||
/// ```rust
|
||
/// # use core::f32::NAN;
|
||
/// # let x = 1.0;
|
||
///
|
||
/// if x == NAN { }
|
||
/// ```
|
||
pub CMP_NAN,
|
||
correctness,
|
||
"comparisons to `NAN`, which will always return false, probably not intended"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Checks for (in-)equality comparisons on floating-point
|
||
/// values (apart from zero), except in functions called `*eq*` (which probably
|
||
/// implement equality for a type involving floats).
|
||
///
|
||
/// **Why is this bad?** Floating point calculations are usually imprecise, so
|
||
/// asking if two values are *exactly* equal is asking for trouble. For a good
|
||
/// guide on what to do, see [the floating point
|
||
/// guide](http://www.floating-point-gui.de/errors/comparison).
|
||
///
|
||
/// **Known problems:** None.
|
||
///
|
||
/// **Example:**
|
||
/// ```rust
|
||
/// let x = 1.2331f64;
|
||
/// let y = 1.2332f64;
|
||
/// if y == 1.23f64 { }
|
||
/// if y != x {} // where both are floats
|
||
/// ```
|
||
pub FLOAT_CMP,
|
||
correctness,
|
||
"using `==` or `!=` on float values instead of comparing difference with an epsilon"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Checks for conversions to owned values just for the sake
|
||
/// of a comparison.
|
||
///
|
||
/// **Why is this bad?** The comparison can operate on a reference, so creating
|
||
/// an owned value effectively throws it away directly afterwards, which is
|
||
/// needlessly consuming code and heap space.
|
||
///
|
||
/// **Known problems:** None.
|
||
///
|
||
/// **Example:**
|
||
/// ```rust
|
||
/// # let x = "foo";
|
||
/// # let y = String::from("foo");
|
||
/// if x.to_owned() == y {}
|
||
/// ```
|
||
/// Could be written as
|
||
/// ```rust
|
||
/// # let x = "foo";
|
||
/// # let y = String::from("foo");
|
||
/// if x == y {}
|
||
/// ```
|
||
pub CMP_OWNED,
|
||
perf,
|
||
"creating owned instances for comparing with others, e.g., `x == \"foo\".to_string()`"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Checks for getting the remainder of a division by one.
|
||
///
|
||
/// **Why is this bad?** The result can only ever be zero. No one will write
|
||
/// such code deliberately, unless trying to win an Underhanded Rust
|
||
/// Contest. Even for that contest, it's probably a bad idea. Use something more
|
||
/// underhanded.
|
||
///
|
||
/// **Known problems:** None.
|
||
///
|
||
/// **Example:**
|
||
/// ```rust
|
||
/// # let x = 1;
|
||
/// let a = x % 1;
|
||
/// ```
|
||
pub MODULO_ONE,
|
||
correctness,
|
||
"taking a number modulo 1, which always returns 0"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Checks for the use of bindings with a single leading
|
||
/// underscore.
|
||
///
|
||
/// **Why is this bad?** A single leading underscore is usually used to indicate
|
||
/// that a binding will not be used. Using such a binding breaks this
|
||
/// expectation.
|
||
///
|
||
/// **Known problems:** The lint does not work properly with desugaring and
|
||
/// macro, it has been allowed in the mean time.
|
||
///
|
||
/// **Example:**
|
||
/// ```rust
|
||
/// let _x = 0;
|
||
/// let y = _x + 1; // Here we are using `_x`, even though it has a leading
|
||
/// // underscore. We should rename `_x` to `x`
|
||
/// ```
|
||
pub USED_UNDERSCORE_BINDING,
|
||
pedantic,
|
||
"using a binding which is prefixed with an underscore"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Checks for the use of short circuit boolean conditions as
|
||
/// a
|
||
/// statement.
|
||
///
|
||
/// **Why is this bad?** Using a short circuit boolean condition as a statement
|
||
/// may hide the fact that the second part is executed or not depending on the
|
||
/// outcome of the first part.
|
||
///
|
||
/// **Known problems:** None.
|
||
///
|
||
/// **Example:**
|
||
/// ```rust,ignore
|
||
/// f() && g(); // We should write `if f() { g(); }`.
|
||
/// ```
|
||
pub SHORT_CIRCUIT_STATEMENT,
|
||
complexity,
|
||
"using a short circuit boolean condition as a statement"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Catch casts from `0` to some pointer type
|
||
///
|
||
/// **Why is this bad?** This generally means `null` and is better expressed as
|
||
/// {`std`, `core`}`::ptr::`{`null`, `null_mut`}.
|
||
///
|
||
/// **Known problems:** None.
|
||
///
|
||
/// **Example:**
|
||
///
|
||
/// ```rust
|
||
/// let a = 0 as *const u32;
|
||
/// ```
|
||
pub ZERO_PTR,
|
||
style,
|
||
"using `0 as *{const, mut} T`"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// **What it does:** Checks for (in-)equality comparisons on floating-point
|
||
/// value and constant, except in functions called `*eq*` (which probably
|
||
/// implement equality for a type involving floats).
|
||
///
|
||
/// **Why is this bad?** Floating point calculations are usually imprecise, so
|
||
/// asking if two values are *exactly* equal is asking for trouble. For a good
|
||
/// guide on what to do, see [the floating point
|
||
/// guide](http://www.floating-point-gui.de/errors/comparison).
|
||
///
|
||
/// **Known problems:** None.
|
||
///
|
||
/// **Example:**
|
||
/// ```rust
|
||
/// let x: f64 = 1.0;
|
||
/// const ONE: f64 = 1.00;
|
||
/// x == ONE; // where both are floats
|
||
/// ```
|
||
pub FLOAT_CMP_CONST,
|
||
restriction,
|
||
"using `==` or `!=` on float constants instead of comparing difference with an epsilon"
|
||
}
|
||
|
||
declare_lint_pass!(MiscLints => [
|
||
TOPLEVEL_REF_ARG,
|
||
CMP_NAN,
|
||
FLOAT_CMP,
|
||
CMP_OWNED,
|
||
MODULO_ONE,
|
||
USED_UNDERSCORE_BINDING,
|
||
SHORT_CIRCUIT_STATEMENT,
|
||
ZERO_PTR,
|
||
FLOAT_CMP_CONST
|
||
]);
|
||
|
||
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MiscLints {
|
||
fn check_fn(
|
||
&mut self,
|
||
cx: &LateContext<'a, 'tcx>,
|
||
k: FnKind<'tcx>,
|
||
decl: &'tcx FnDecl<'_>,
|
||
body: &'tcx Body<'_>,
|
||
_: Span,
|
||
_: HirId,
|
||
) {
|
||
if let FnKind::Closure(_) = k {
|
||
// Does not apply to closures
|
||
return;
|
||
}
|
||
for arg in iter_input_pats(decl, body) {
|
||
match arg.pat.kind {
|
||
PatKind::Binding(BindingAnnotation::Ref, ..) | PatKind::Binding(BindingAnnotation::RefMut, ..) => {
|
||
span_lint(
|
||
cx,
|
||
TOPLEVEL_REF_ARG,
|
||
arg.pat.span,
|
||
"`ref` directly on a function argument is ignored. Consider using a reference type \
|
||
instead.",
|
||
);
|
||
},
|
||
_ => {},
|
||
}
|
||
}
|
||
}
|
||
|
||
fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, stmt: &'tcx Stmt<'_>) {
|
||
if_chain! {
|
||
if let StmtKind::Local(ref local) = stmt.kind;
|
||
if let PatKind::Binding(an, .., name, None) = local.pat.kind;
|
||
if let Some(ref init) = local.init;
|
||
then {
|
||
if an == BindingAnnotation::Ref || an == BindingAnnotation::RefMut {
|
||
let sugg_init = if init.span.from_expansion() {
|
||
Sugg::hir_with_macro_callsite(cx, init, "..")
|
||
} else {
|
||
Sugg::hir(cx, init, "..")
|
||
};
|
||
let (mutopt, initref) = if an == BindingAnnotation::RefMut {
|
||
("mut ", sugg_init.mut_addr())
|
||
} else {
|
||
("", sugg_init.addr())
|
||
};
|
||
let tyopt = if let Some(ref ty) = local.ty {
|
||
format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, "_"))
|
||
} else {
|
||
String::new()
|
||
};
|
||
span_lint_hir_and_then(
|
||
cx,
|
||
TOPLEVEL_REF_ARG,
|
||
init.hir_id,
|
||
local.pat.span,
|
||
"`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead",
|
||
|db| {
|
||
db.span_suggestion(
|
||
stmt.span,
|
||
"try",
|
||
format!(
|
||
"let {name}{tyopt} = {initref};",
|
||
name=snippet(cx, name.span, "_"),
|
||
tyopt=tyopt,
|
||
initref=initref,
|
||
),
|
||
Applicability::MachineApplicable,
|
||
);
|
||
}
|
||
);
|
||
}
|
||
}
|
||
};
|
||
if_chain! {
|
||
if let StmtKind::Semi(ref expr) = stmt.kind;
|
||
if let ExprKind::Binary(ref binop, ref a, ref b) = expr.kind;
|
||
if binop.node == BinOpKind::And || binop.node == BinOpKind::Or;
|
||
if let Some(sugg) = Sugg::hir_opt(cx, a);
|
||
then {
|
||
span_lint_and_then(cx,
|
||
SHORT_CIRCUIT_STATEMENT,
|
||
stmt.span,
|
||
"boolean short circuit operator in statement may be clearer using an explicit test",
|
||
|db| {
|
||
let sugg = if binop.node == BinOpKind::Or { !sugg } else { sugg };
|
||
db.span_suggestion(
|
||
stmt.span,
|
||
"replace it with",
|
||
format!(
|
||
"if {} {{ {}; }}",
|
||
sugg,
|
||
&snippet(cx, b.span, ".."),
|
||
),
|
||
Applicability::MachineApplicable, // snippet
|
||
);
|
||
});
|
||
}
|
||
};
|
||
}
|
||
|
||
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) {
|
||
match expr.kind {
|
||
ExprKind::Cast(ref e, ref ty) => {
|
||
check_cast(cx, expr.span, e, ty);
|
||
return;
|
||
},
|
||
ExprKind::Binary(ref cmp, ref left, ref right) => {
|
||
let op = cmp.node;
|
||
if op.is_comparison() {
|
||
check_nan(cx, left, expr);
|
||
check_nan(cx, right, expr);
|
||
check_to_owned(cx, left, right);
|
||
check_to_owned(cx, right, left);
|
||
}
|
||
if (op == BinOpKind::Eq || op == BinOpKind::Ne) && (is_float(cx, left) || is_float(cx, right)) {
|
||
if is_allowed(cx, left) || is_allowed(cx, right) {
|
||
return;
|
||
}
|
||
|
||
// Allow comparing the results of signum()
|
||
if is_signum(cx, left) && is_signum(cx, right) {
|
||
return;
|
||
}
|
||
|
||
if let Some(name) = get_item_name(cx, expr) {
|
||
let name = name.as_str();
|
||
if name == "eq"
|
||
|| name == "ne"
|
||
|| name == "is_nan"
|
||
|| name.starts_with("eq_")
|
||
|| name.ends_with("_eq")
|
||
{
|
||
return;
|
||
}
|
||
}
|
||
let (lint, msg) = if is_named_constant(cx, left) || is_named_constant(cx, right) {
|
||
(FLOAT_CMP_CONST, "strict comparison of `f32` or `f64` constant")
|
||
} else {
|
||
(FLOAT_CMP, "strict comparison of `f32` or `f64`")
|
||
};
|
||
span_lint_and_then(cx, lint, expr.span, msg, |db| {
|
||
let lhs = Sugg::hir(cx, left, "..");
|
||
let rhs = Sugg::hir(cx, right, "..");
|
||
|
||
db.span_suggestion(
|
||
expr.span,
|
||
"consider comparing them within some error",
|
||
format!(
|
||
"({}).abs() {} error",
|
||
lhs - rhs,
|
||
if op == BinOpKind::Eq { '<' } else { '>' }
|
||
),
|
||
Applicability::HasPlaceholders, // snippet
|
||
);
|
||
db.span_note(expr.span, "`std::f32::EPSILON` and `std::f64::EPSILON` are available.");
|
||
});
|
||
} else if op == BinOpKind::Rem && is_integer_const(cx, right, 1) {
|
||
span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0");
|
||
}
|
||
},
|
||
_ => {},
|
||
}
|
||
if in_attributes_expansion(expr) {
|
||
// Don't lint things expanded by #[derive(...)], etc
|
||
return;
|
||
}
|
||
let binding = match expr.kind {
|
||
ExprKind::Path(ref qpath) => {
|
||
let binding = last_path_segment(qpath).ident.as_str();
|
||
if binding.starts_with('_') &&
|
||
!binding.starts_with("__") &&
|
||
binding != "_result" && // FIXME: #944
|
||
is_used(cx, expr) &&
|
||
// don't lint if the declaration is in a macro
|
||
non_macro_local(cx, cx.tables.qpath_res(qpath, expr.hir_id))
|
||
{
|
||
Some(binding)
|
||
} else {
|
||
None
|
||
}
|
||
},
|
||
ExprKind::Field(_, ident) => {
|
||
let name = ident.as_str();
|
||
if name.starts_with('_') && !name.starts_with("__") {
|
||
Some(name)
|
||
} else {
|
||
None
|
||
}
|
||
},
|
||
_ => None,
|
||
};
|
||
if let Some(binding) = binding {
|
||
span_lint(
|
||
cx,
|
||
USED_UNDERSCORE_BINDING,
|
||
expr.span,
|
||
&format!(
|
||
"used binding `{}` which is prefixed with an underscore. A leading \
|
||
underscore signals that a binding will not be used.",
|
||
binding
|
||
),
|
||
);
|
||
}
|
||
}
|
||
}
|
||
|
||
fn check_nan(cx: &LateContext<'_, '_>, expr: &Expr<'_>, cmp_expr: &Expr<'_>) {
|
||
if_chain! {
|
||
if !in_constant(cx, cmp_expr.hir_id);
|
||
if let Some((value, _)) = constant(cx, cx.tables, expr);
|
||
then {
|
||
let needs_lint = match value {
|
||
Constant::F32(num) => num.is_nan(),
|
||
Constant::F64(num) => num.is_nan(),
|
||
_ => false,
|
||
};
|
||
|
||
if needs_lint {
|
||
span_lint(
|
||
cx,
|
||
CMP_NAN,
|
||
cmp_expr.span,
|
||
"doomed comparison with `NAN`, use `std::{f32,f64}::is_nan()` instead",
|
||
);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
fn is_named_constant<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) -> bool {
|
||
if let Some((_, res)) = constant(cx, cx.tables, expr) {
|
||
res
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
fn is_allowed<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) -> bool {
|
||
match constant(cx, cx.tables, expr) {
|
||
Some((Constant::F32(f), _)) => f == 0.0 || f.is_infinite(),
|
||
Some((Constant::F64(f), _)) => f == 0.0 || f.is_infinite(),
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
// Return true if `expr` is the result of `signum()` invoked on a float value.
|
||
fn is_signum(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool {
|
||
// The negation of a signum is still a signum
|
||
if let ExprKind::Unary(UnOp::UnNeg, ref child_expr) = expr.kind {
|
||
return is_signum(cx, &child_expr);
|
||
}
|
||
|
||
if_chain! {
|
||
if let ExprKind::MethodCall(ref method_name, _, ref expressions) = expr.kind;
|
||
if sym!(signum) == method_name.ident.name;
|
||
// Check that the receiver of the signum() is a float (expressions[0] is the receiver of
|
||
// the method call)
|
||
then {
|
||
return is_float(cx, &expressions[0]);
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
fn is_float(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool {
|
||
matches!(walk_ptrs_ty(cx.tables.expr_ty(expr)).kind, ty::Float(_))
|
||
}
|
||
|
||
fn check_to_owned(cx: &LateContext<'_, '_>, expr: &Expr<'_>, other: &Expr<'_>) {
|
||
let (arg_ty, snip) = match expr.kind {
|
||
ExprKind::MethodCall(.., ref args) if args.len() == 1 => {
|
||
if match_trait_method(cx, expr, &paths::TO_STRING) || match_trait_method(cx, expr, &paths::TO_OWNED) {
|
||
(cx.tables.expr_ty_adjusted(&args[0]), snippet(cx, args[0].span, ".."))
|
||
} else {
|
||
return;
|
||
}
|
||
},
|
||
ExprKind::Call(ref path, ref v) if v.len() == 1 => {
|
||
if let ExprKind::Path(ref path) = path.kind {
|
||
if match_qpath(path, &["String", "from_str"]) || match_qpath(path, &["String", "from"]) {
|
||
(cx.tables.expr_ty_adjusted(&v[0]), snippet(cx, v[0].span, ".."))
|
||
} else {
|
||
return;
|
||
}
|
||
} else {
|
||
return;
|
||
}
|
||
},
|
||
_ => return,
|
||
};
|
||
|
||
let other_ty = cx.tables.expr_ty_adjusted(other);
|
||
let partial_eq_trait_id = match cx.tcx.lang_items().eq_trait() {
|
||
Some(id) => id,
|
||
None => return,
|
||
};
|
||
|
||
let deref_arg_impl_partial_eq_other = arg_ty.builtin_deref(true).map_or(false, |tam| {
|
||
implements_trait(cx, tam.ty, partial_eq_trait_id, &[other_ty.into()])
|
||
});
|
||
let arg_impl_partial_eq_deref_other = other_ty.builtin_deref(true).map_or(false, |tam| {
|
||
implements_trait(cx, arg_ty, partial_eq_trait_id, &[tam.ty.into()])
|
||
});
|
||
let arg_impl_partial_eq_other = implements_trait(cx, arg_ty, partial_eq_trait_id, &[other_ty.into()]);
|
||
|
||
if !deref_arg_impl_partial_eq_other && !arg_impl_partial_eq_deref_other && !arg_impl_partial_eq_other {
|
||
return;
|
||
}
|
||
|
||
let other_gets_derefed = match other.kind {
|
||
ExprKind::Unary(UnOp::UnDeref, _) => true,
|
||
_ => false,
|
||
};
|
||
|
||
let lint_span = if other_gets_derefed {
|
||
expr.span.to(other.span)
|
||
} else {
|
||
expr.span
|
||
};
|
||
|
||
span_lint_and_then(
|
||
cx,
|
||
CMP_OWNED,
|
||
lint_span,
|
||
"this creates an owned instance just for comparison",
|
||
|db| {
|
||
// This also catches `PartialEq` implementations that call `to_owned`.
|
||
if other_gets_derefed {
|
||
db.span_label(lint_span, "try implementing the comparison without allocating");
|
||
return;
|
||
}
|
||
|
||
let try_hint = if deref_arg_impl_partial_eq_other {
|
||
// suggest deref on the left
|
||
format!("*{}", snip)
|
||
} else {
|
||
// suggest dropping the to_owned on the left
|
||
snip.to_string()
|
||
};
|
||
|
||
db.span_suggestion(
|
||
lint_span,
|
||
"try",
|
||
try_hint,
|
||
Applicability::MachineApplicable, // snippet
|
||
);
|
||
},
|
||
);
|
||
}
|
||
|
||
/// Heuristic to see if an expression is used. Should be compatible with
|
||
/// `unused_variables`'s idea
|
||
/// of what it means for an expression to be "used".
|
||
fn is_used(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool {
|
||
if let Some(parent) = get_parent_expr(cx, expr) {
|
||
match parent.kind {
|
||
ExprKind::Assign(_, ref rhs, _) | ExprKind::AssignOp(_, _, ref rhs) => {
|
||
SpanlessEq::new(cx).eq_expr(rhs, expr)
|
||
},
|
||
_ => is_used(cx, parent),
|
||
}
|
||
} else {
|
||
true
|
||
}
|
||
}
|
||
|
||
/// Tests whether an expression is in a macro expansion (e.g., something
|
||
/// generated by `#[derive(...)]` or the like).
|
||
fn in_attributes_expansion(expr: &Expr<'_>) -> bool {
|
||
use rustc_span::hygiene::MacroKind;
|
||
if expr.span.from_expansion() {
|
||
let data = expr.span.ctxt().outer_expn_data();
|
||
|
||
if let ExpnKind::Macro(MacroKind::Attr, _) = data.kind {
|
||
true
|
||
} else {
|
||
false
|
||
}
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// Tests whether `res` is a variable defined outside a macro.
|
||
fn non_macro_local(cx: &LateContext<'_, '_>, res: def::Res) -> bool {
|
||
if let def::Res::Local(id) = res {
|
||
!cx.tcx.hir().span(id).from_expansion()
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
fn check_cast(cx: &LateContext<'_, '_>, span: Span, e: &Expr<'_>, ty: &Ty<'_>) {
|
||
if_chain! {
|
||
if let TyKind::Ptr(ref mut_ty) = ty.kind;
|
||
if let ExprKind::Lit(ref lit) = e.kind;
|
||
if let LitKind::Int(0, _) = lit.node;
|
||
if !in_constant(cx, e.hir_id);
|
||
then {
|
||
let (msg, sugg_fn) = match mut_ty.mutbl {
|
||
Mutability::Mut => ("`0 as *mut _` detected", "std::ptr::null_mut"),
|
||
Mutability::Not => ("`0 as *const _` detected", "std::ptr::null"),
|
||
};
|
||
|
||
let (sugg, appl) = if let TyKind::Infer = mut_ty.ty.kind {
|
||
(format!("{}()", sugg_fn), Applicability::MachineApplicable)
|
||
} else if let Some(mut_ty_snip) = snippet_opt(cx, mut_ty.ty.span) {
|
||
(format!("{}::<{}>()", sugg_fn, mut_ty_snip), Applicability::MachineApplicable)
|
||
} else {
|
||
// `MaybeIncorrect` as type inference may not work with the suggested code
|
||
(format!("{}()", sugg_fn), Applicability::MaybeIncorrect)
|
||
};
|
||
span_lint_and_sugg(cx, ZERO_PTR, span, msg, "try", sugg, appl);
|
||
}
|
||
}
|
||
}
|