rust-clippy/clippy_lints/src/eq_op.rs

233 lines
10 KiB
Rust

use crate::utils::{
eq_expr_value, implements_trait, in_macro, is_copy, multispan_sugg, snippet, span_lint, span_lint_and_then,
};
use rustc_errors::Applicability;
use rustc_hir::{BinOp, BinOpKind, BorrowKind, Expr, ExprKind};
use rustc_lint::{LateContext, LateLintPass};
use rustc_session::{declare_lint_pass, declare_tool_lint};
declare_clippy_lint! {
/// **What it does:** Checks for equal operands to comparison, logical and
/// bitwise, difference and division binary operators (`==`, `>`, etc., `&&`,
/// `||`, `&`, `|`, `^`, `-` and `/`).
///
/// **Why is this bad?** This is usually just a typo or a copy and paste error.
///
/// **Known problems:** False negatives: We had some false positives regarding
/// calls (notably [racer](https://github.com/phildawes/racer) had one instance
/// of `x.pop() && x.pop()`), so we removed matching any function or method
/// calls. We may introduce a list of known pure functions in the future.
///
/// **Example:**
/// ```rust
/// # let x = 1;
/// if x + 1 == x + 1 {}
/// ```
pub EQ_OP,
correctness,
"equal operands on both sides of a comparison or bitwise combination (e.g., `x == x`)"
}
declare_clippy_lint! {
/// **What it does:** Checks for arguments to `==` which have their address
/// taken to satisfy a bound
/// and suggests to dereference the other argument instead
///
/// **Why is this bad?** It is more idiomatic to dereference the other argument.
///
/// **Known problems:** None
///
/// **Example:**
/// ```ignore
/// // Bad
/// &x == y
///
/// // Good
/// x == *y
/// ```
pub OP_REF,
style,
"taking a reference to satisfy the type constraints on `==`"
}
declare_lint_pass!(EqOp => [EQ_OP, OP_REF]);
impl<'tcx> LateLintPass<'tcx> for EqOp {
#[allow(clippy::similar_names, clippy::too_many_lines)]
fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) {
if let ExprKind::Binary(op, ref left, ref right) = e.kind {
if e.span.from_expansion() {
return;
}
let macro_with_not_op = |expr_kind: &ExprKind<'_>| {
if let ExprKind::Unary(_, ref expr) = *expr_kind {
in_macro(expr.span)
} else {
false
}
};
if macro_with_not_op(&left.kind) || macro_with_not_op(&right.kind) {
return;
}
if is_valid_operator(op) && eq_expr_value(cx, left, right) {
span_lint(
cx,
EQ_OP,
e.span,
&format!("equal expressions as operands to `{}`", op.node.as_str()),
);
return;
}
let (trait_id, requires_ref) = match op.node {
BinOpKind::Add => (cx.tcx.lang_items().add_trait(), false),
BinOpKind::Sub => (cx.tcx.lang_items().sub_trait(), false),
BinOpKind::Mul => (cx.tcx.lang_items().mul_trait(), false),
BinOpKind::Div => (cx.tcx.lang_items().div_trait(), false),
BinOpKind::Rem => (cx.tcx.lang_items().rem_trait(), false),
// don't lint short circuiting ops
BinOpKind::And | BinOpKind::Or => return,
BinOpKind::BitXor => (cx.tcx.lang_items().bitxor_trait(), false),
BinOpKind::BitAnd => (cx.tcx.lang_items().bitand_trait(), false),
BinOpKind::BitOr => (cx.tcx.lang_items().bitor_trait(), false),
BinOpKind::Shl => (cx.tcx.lang_items().shl_trait(), false),
BinOpKind::Shr => (cx.tcx.lang_items().shr_trait(), false),
BinOpKind::Ne | BinOpKind::Eq => (cx.tcx.lang_items().eq_trait(), true),
BinOpKind::Lt | BinOpKind::Le | BinOpKind::Ge | BinOpKind::Gt => {
(cx.tcx.lang_items().partial_ord_trait(), true)
},
};
if let Some(trait_id) = trait_id {
#[allow(clippy::match_same_arms)]
match (&left.kind, &right.kind) {
// do not suggest to dereference literals
(&ExprKind::Lit(..), _) | (_, &ExprKind::Lit(..)) => {},
// &foo == &bar
(&ExprKind::AddrOf(BorrowKind::Ref, _, ref l), &ExprKind::AddrOf(BorrowKind::Ref, _, ref r)) => {
let lty = cx.typeck_results().expr_ty(l);
let rty = cx.typeck_results().expr_ty(r);
let lcpy = is_copy(cx, lty);
let rcpy = is_copy(cx, rty);
// either operator autorefs or both args are copyable
if (requires_ref || (lcpy && rcpy)) && implements_trait(cx, lty, trait_id, &[rty.into()]) {
span_lint_and_then(
cx,
OP_REF,
e.span,
"needlessly taken reference of both operands",
|diag| {
let lsnip = snippet(cx, l.span, "...").to_string();
let rsnip = snippet(cx, r.span, "...").to_string();
multispan_sugg(
diag,
"use the values directly",
vec![(left.span, lsnip), (right.span, rsnip)],
);
},
)
} else if lcpy
&& !rcpy
&& implements_trait(cx, lty, trait_id, &[cx.typeck_results().expr_ty(right).into()])
{
span_lint_and_then(
cx,
OP_REF,
e.span,
"needlessly taken reference of left operand",
|diag| {
let lsnip = snippet(cx, l.span, "...").to_string();
diag.span_suggestion(
left.span,
"use the left value directly",
lsnip,
Applicability::MaybeIncorrect, // FIXME #2597
);
},
)
} else if !lcpy
&& rcpy
&& implements_trait(cx, cx.typeck_results().expr_ty(left), trait_id, &[rty.into()])
{
span_lint_and_then(
cx,
OP_REF,
e.span,
"needlessly taken reference of right operand",
|diag| {
let rsnip = snippet(cx, r.span, "...").to_string();
diag.span_suggestion(
right.span,
"use the right value directly",
rsnip,
Applicability::MaybeIncorrect, // FIXME #2597
);
},
)
}
},
// &foo == bar
(&ExprKind::AddrOf(BorrowKind::Ref, _, ref l), _) => {
let lty = cx.typeck_results().expr_ty(l);
let lcpy = is_copy(cx, lty);
if (requires_ref || lcpy)
&& implements_trait(cx, lty, trait_id, &[cx.typeck_results().expr_ty(right).into()])
{
span_lint_and_then(
cx,
OP_REF,
e.span,
"needlessly taken reference of left operand",
|diag| {
let lsnip = snippet(cx, l.span, "...").to_string();
diag.span_suggestion(
left.span,
"use the left value directly",
lsnip,
Applicability::MaybeIncorrect, // FIXME #2597
);
},
)
}
},
// foo == &bar
(_, &ExprKind::AddrOf(BorrowKind::Ref, _, ref r)) => {
let rty = cx.typeck_results().expr_ty(r);
let rcpy = is_copy(cx, rty);
if (requires_ref || rcpy)
&& implements_trait(cx, cx.typeck_results().expr_ty(left), trait_id, &[rty.into()])
{
span_lint_and_then(cx, OP_REF, e.span, "taken reference of right operand", |diag| {
let rsnip = snippet(cx, r.span, "...").to_string();
diag.span_suggestion(
right.span,
"use the right value directly",
rsnip,
Applicability::MaybeIncorrect, // FIXME #2597
);
})
}
},
_ => {},
}
}
}
}
}
fn is_valid_operator(op: BinOp) -> bool {
matches!(
op.node,
BinOpKind::Sub
| BinOpKind::Div
| BinOpKind::Eq
| BinOpKind::Lt
| BinOpKind::Le
| BinOpKind::Gt
| BinOpKind::Ge
| BinOpKind::Ne
| BinOpKind::And
| BinOpKind::Or
| BinOpKind::BitXor
| BinOpKind::BitAnd
| BinOpKind::BitOr
)
}