rust-clippy/clippy_lints/src/utils/higher.rs
Oliver Schneider b25b6b3355
Rustfmt
2017-08-14 09:43:26 +02:00

184 lines
6.7 KiB
Rust

//! This module contains functions for retrieve the original AST from lowered
//! `hir`.
#![deny(missing_docs_in_private_items)]
use rustc::hir;
use rustc::lint::LateContext;
use syntax::ast;
use utils::{is_expn_of, match_path, match_def_path, resolve_node, paths};
/// Convert a hir binary operator to the corresponding `ast` type.
pub fn binop(op: hir::BinOp_) -> ast::BinOpKind {
match op {
hir::BiEq => ast::BinOpKind::Eq,
hir::BiGe => ast::BinOpKind::Ge,
hir::BiGt => ast::BinOpKind::Gt,
hir::BiLe => ast::BinOpKind::Le,
hir::BiLt => ast::BinOpKind::Lt,
hir::BiNe => ast::BinOpKind::Ne,
hir::BiOr => ast::BinOpKind::Or,
hir::BiAdd => ast::BinOpKind::Add,
hir::BiAnd => ast::BinOpKind::And,
hir::BiBitAnd => ast::BinOpKind::BitAnd,
hir::BiBitOr => ast::BinOpKind::BitOr,
hir::BiBitXor => ast::BinOpKind::BitXor,
hir::BiDiv => ast::BinOpKind::Div,
hir::BiMul => ast::BinOpKind::Mul,
hir::BiRem => ast::BinOpKind::Rem,
hir::BiShl => ast::BinOpKind::Shl,
hir::BiShr => ast::BinOpKind::Shr,
hir::BiSub => ast::BinOpKind::Sub,
}
}
/// Represent a range akin to `ast::ExprKind::Range`.
#[derive(Debug, Copy, Clone)]
pub struct Range<'a> {
/// The lower bound of the range, or `None` for ranges such as `..X`.
pub start: Option<&'a hir::Expr>,
/// The upper bound of the range, or `None` for ranges such as `X..`.
pub end: Option<&'a hir::Expr>,
/// Whether the interval is open or closed.
pub limits: ast::RangeLimits,
}
/// Higher a `hir` range to something similar to `ast::ExprKind::Range`.
pub fn range(expr: &hir::Expr) -> Option<Range> {
/// Find the field named `name` in the field. Always return `Some` for
/// convenience.
fn get_field<'a>(name: &str, fields: &'a [hir::Field]) -> Option<&'a hir::Expr> {
let expr = &fields
.iter()
.find(|field| field.name.node == name)
.unwrap_or_else(|| panic!("missing {} field for range", name))
.expr;
Some(expr)
}
// The range syntax is expanded to literal paths starting with `core` or `std`
// depending on
// `#[no_std]`. Testing both instead of resolving the paths.
match expr.node {
hir::ExprPath(ref path) => {
if match_path(path, &paths::RANGE_FULL_STD) || match_path(path, &paths::RANGE_FULL) {
Some(Range {
start: None,
end: None,
limits: ast::RangeLimits::HalfOpen,
})
} else {
None
}
},
hir::ExprStruct(ref path, ref fields, None) => {
if match_path(path, &paths::RANGE_FROM_STD) || match_path(path, &paths::RANGE_FROM) {
Some(Range {
start: get_field("start", fields),
end: None,
limits: ast::RangeLimits::HalfOpen,
})
} else if match_path(path, &paths::RANGE_INCLUSIVE_STD) || match_path(path, &paths::RANGE_INCLUSIVE) {
Some(Range {
start: get_field("start", fields),
end: get_field("end", fields),
limits: ast::RangeLimits::Closed,
})
} else if match_path(path, &paths::RANGE_STD) || match_path(path, &paths::RANGE) {
Some(Range {
start: get_field("start", fields),
end: get_field("end", fields),
limits: ast::RangeLimits::HalfOpen,
})
} else if match_path(path, &paths::RANGE_TO_INCLUSIVE_STD) || match_path(path, &paths::RANGE_TO_INCLUSIVE) {
Some(Range {
start: None,
end: get_field("end", fields),
limits: ast::RangeLimits::Closed,
})
} else if match_path(path, &paths::RANGE_TO_STD) || match_path(path, &paths::RANGE_TO) {
Some(Range {
start: None,
end: get_field("end", fields),
limits: ast::RangeLimits::HalfOpen,
})
} else {
None
}
},
_ => None,
}
}
/// Checks if a `let` decl is from a `for` loop desugaring.
pub fn is_from_for_desugar(decl: &hir::Decl) -> bool {
if_let_chain! {[
let hir::DeclLocal(ref loc) = decl.node,
let Some(ref expr) = loc.init,
let hir::ExprMatch(_, _, hir::MatchSource::ForLoopDesugar) = expr.node,
], {
return true;
}}
false
}
/// Recover the essential nodes of a desugared for loop:
/// `for pat in arg { body }` becomes `(pat, arg, body)`.
pub fn for_loop(expr: &hir::Expr) -> Option<(&hir::Pat, &hir::Expr, &hir::Expr)> {
if_let_chain! {[
let hir::ExprMatch(ref iterexpr, ref arms, hir::MatchSource::ForLoopDesugar) = expr.node,
let hir::ExprCall(_, ref iterargs) = iterexpr.node,
iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(),
let hir::ExprLoop(ref block, _, _) = arms[0].body.node,
block.expr.is_none(),
let [ _, _, ref let_stmt, ref body ] = *block.stmts,
let hir::StmtDecl(ref decl, _) = let_stmt.node,
let hir::DeclLocal(ref decl) = decl.node,
let hir::StmtExpr(ref expr, _) = body.node,
], {
return Some((&*decl.pat, &iterargs[0], expr));
}}
None
}
/// Represent the pre-expansion arguments of a `vec!` invocation.
pub enum VecArgs<'a> {
/// `vec![elem; len]`
Repeat(&'a hir::Expr, &'a hir::Expr),
/// `vec![a, b, c]`
Vec(&'a [hir::Expr]),
}
/// Returns the arguments of the `vec!` macro if this expression was expanded
/// from `vec!`.
pub fn vec_macro<'e>(cx: &LateContext, expr: &'e hir::Expr) -> Option<VecArgs<'e>> {
if_let_chain!{[
let hir::ExprCall(ref fun, ref args) = expr.node,
let hir::ExprPath(ref path) = fun.node,
is_expn_of(fun.span, "vec").is_some(),
], {
let fun_def = resolve_node(cx, path, fun.id);
return if match_def_path(cx.tcx, fun_def.def_id(), &paths::VEC_FROM_ELEM) && args.len() == 2 {
// `vec![elem; size]` case
Some(VecArgs::Repeat(&args[0], &args[1]))
}
else if match_def_path(cx.tcx, fun_def.def_id(), &paths::SLICE_INTO_VEC) && args.len() == 1 {
// `vec![a, b, c]` case
if_let_chain!{[
let hir::ExprBox(ref boxed) = args[0].node,
let hir::ExprArray(ref args) = boxed.node
], {
return Some(VecArgs::Vec(&*args));
}}
None
}
else {
None
};
}}
None
}