rust-clippy/clippy_lints/src/eval_order_dependence.rs

357 lines
12 KiB
Rust

use clippy_utils::diagnostics::{span_lint, span_lint_and_note};
use clippy_utils::{get_parent_expr, path_to_local, path_to_local_id};
use if_chain::if_chain;
use rustc_hir::intravisit::{walk_expr, NestedVisitorMap, Visitor};
use rustc_hir::{BinOpKind, Block, Expr, ExprKind, Guard, HirId, Local, Node, Stmt, StmtKind};
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::hir::map::Map;
use rustc_middle::ty;
use rustc_session::{declare_lint_pass, declare_tool_lint};
declare_clippy_lint! {
/// ### What it does
/// Checks for a read and a write to the same variable where
/// whether the read occurs before or after the write depends on the evaluation
/// order of sub-expressions.
///
/// ### Why is this bad?
/// It is often confusing to read. In addition, the
/// sub-expression evaluation order for Rust is not well documented.
///
/// ### Known problems
/// Code which intentionally depends on the evaluation
/// order, or which is correct for any evaluation order.
///
/// ### Example
/// ```rust
/// let mut x = 0;
///
/// // Bad
/// let a = {
/// x = 1;
/// 1
/// } + x;
/// // Unclear whether a is 1 or 2.
///
/// // Good
/// let tmp = {
/// x = 1;
/// 1
/// };
/// let a = tmp + x;
/// ```
pub EVAL_ORDER_DEPENDENCE,
suspicious,
"whether a variable read occurs before a write depends on sub-expression evaluation order"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for diverging calls that are not match arms or
/// statements.
///
/// ### Why is this bad?
/// It is often confusing to read. In addition, the
/// sub-expression evaluation order for Rust is not well documented.
///
/// ### Known problems
/// Someone might want to use `some_bool || panic!()` as a
/// shorthand.
///
/// ### Example
/// ```rust,no_run
/// # fn b() -> bool { true }
/// # fn c() -> bool { true }
/// let a = b() || panic!() || c();
/// // `c()` is dead, `panic!()` is only called if `b()` returns `false`
/// let x = (a, b, c, panic!());
/// // can simply be replaced by `panic!()`
/// ```
pub DIVERGING_SUB_EXPRESSION,
complexity,
"whether an expression contains a diverging sub expression"
}
declare_lint_pass!(EvalOrderDependence => [EVAL_ORDER_DEPENDENCE, DIVERGING_SUB_EXPRESSION]);
impl<'tcx> LateLintPass<'tcx> for EvalOrderDependence {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
// Find a write to a local variable.
let var = if_chain! {
if let ExprKind::Assign(lhs, ..) | ExprKind::AssignOp(_, lhs, _) = expr.kind;
if let Some(var) = path_to_local(lhs);
if expr.span.desugaring_kind().is_none();
then { var } else { return; }
};
let mut visitor = ReadVisitor {
cx,
var,
write_expr: expr,
last_expr: expr,
};
check_for_unsequenced_reads(&mut visitor);
}
fn check_stmt(&mut self, cx: &LateContext<'tcx>, stmt: &'tcx Stmt<'_>) {
match stmt.kind {
StmtKind::Local(local) => {
if let Local { init: Some(e), .. } = local {
DivergenceVisitor { cx }.visit_expr(e);
}
},
StmtKind::Expr(e) | StmtKind::Semi(e) => DivergenceVisitor { cx }.maybe_walk_expr(e),
StmtKind::Item(..) => {},
}
}
}
struct DivergenceVisitor<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
}
impl<'a, 'tcx> DivergenceVisitor<'a, 'tcx> {
fn maybe_walk_expr(&mut self, e: &'tcx Expr<'_>) {
match e.kind {
ExprKind::Closure(..) => {},
ExprKind::Match(e, arms, _) => {
self.visit_expr(e);
for arm in arms {
if let Some(Guard::If(if_expr)) = arm.guard {
self.visit_expr(if_expr);
}
// make sure top level arm expressions aren't linted
self.maybe_walk_expr(&*arm.body);
}
},
_ => walk_expr(self, e),
}
}
fn report_diverging_sub_expr(&mut self, e: &Expr<'_>) {
span_lint(self.cx, DIVERGING_SUB_EXPRESSION, e.span, "sub-expression diverges");
}
}
impl<'a, 'tcx> Visitor<'tcx> for DivergenceVisitor<'a, 'tcx> {
type Map = Map<'tcx>;
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
match e.kind {
ExprKind::Continue(_) | ExprKind::Break(_, _) | ExprKind::Ret(_) => self.report_diverging_sub_expr(e),
ExprKind::Call(func, _) => {
let typ = self.cx.typeck_results().expr_ty(func);
match typ.kind() {
ty::FnDef(..) | ty::FnPtr(_) => {
let sig = typ.fn_sig(self.cx.tcx);
if let ty::Never = self.cx.tcx.erase_late_bound_regions(sig).output().kind() {
self.report_diverging_sub_expr(e);
}
},
_ => {},
}
},
ExprKind::MethodCall(..) => {
let borrowed_table = self.cx.typeck_results();
if borrowed_table.expr_ty(e).is_never() {
self.report_diverging_sub_expr(e);
}
},
_ => {
// do not lint expressions referencing objects of type `!`, as that required a
// diverging expression
// to begin with
},
}
self.maybe_walk_expr(e);
}
fn visit_block(&mut self, _: &'tcx Block<'_>) {
// don't continue over blocks, LateLintPass already does that
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
/// Walks up the AST from the given write expression (`vis.write_expr`) looking
/// for reads to the same variable that are unsequenced relative to the write.
///
/// This means reads for which there is a common ancestor between the read and
/// the write such that
///
/// * evaluating the ancestor necessarily evaluates both the read and the write (for example, `&x`
/// and `|| x = 1` don't necessarily evaluate `x`), and
///
/// * which one is evaluated first depends on the order of sub-expression evaluation. Blocks, `if`s,
/// loops, `match`es, and the short-circuiting logical operators are considered to have a defined
/// evaluation order.
///
/// When such a read is found, the lint is triggered.
fn check_for_unsequenced_reads(vis: &mut ReadVisitor<'_, '_>) {
let map = &vis.cx.tcx.hir();
let mut cur_id = vis.write_expr.hir_id;
loop {
let parent_id = map.get_parent_node(cur_id);
if parent_id == cur_id {
break;
}
let parent_node = match map.find(parent_id) {
Some(parent) => parent,
None => break,
};
let stop_early = match parent_node {
Node::Expr(expr) => check_expr(vis, expr),
Node::Stmt(stmt) => check_stmt(vis, stmt),
Node::Item(_) => {
// We reached the top of the function, stop.
break;
},
_ => StopEarly::KeepGoing,
};
match stop_early {
StopEarly::Stop => break,
StopEarly::KeepGoing => {},
}
cur_id = parent_id;
}
}
/// Whether to stop early for the loop in `check_for_unsequenced_reads`. (If
/// `check_expr` weren't an independent function, this would be unnecessary and
/// we could just use `break`).
enum StopEarly {
KeepGoing,
Stop,
}
fn check_expr<'a, 'tcx>(vis: &mut ReadVisitor<'a, 'tcx>, expr: &'tcx Expr<'_>) -> StopEarly {
if expr.hir_id == vis.last_expr.hir_id {
return StopEarly::KeepGoing;
}
match expr.kind {
ExprKind::Array(_)
| ExprKind::Tup(_)
| ExprKind::MethodCall(..)
| ExprKind::Call(_, _)
| ExprKind::Assign(..)
| ExprKind::Index(_, _)
| ExprKind::Repeat(_, _)
| ExprKind::Struct(_, _, _) => {
walk_expr(vis, expr);
},
ExprKind::Binary(op, _, _) | ExprKind::AssignOp(op, _, _) => {
if op.node == BinOpKind::And || op.node == BinOpKind::Or {
// x && y and x || y always evaluate x first, so these are
// strictly sequenced.
} else {
walk_expr(vis, expr);
}
},
ExprKind::Closure(_, _, _, _, _) => {
// Either
//
// * `var` is defined in the closure body, in which case we've reached the top of the enclosing
// function and can stop, or
//
// * `var` is captured by the closure, in which case, because evaluating a closure does not evaluate
// its body, we don't necessarily have a write, so we need to stop to avoid generating false
// positives.
//
// This is also the only place we need to stop early (grrr).
return StopEarly::Stop;
},
// All other expressions either have only one child or strictly
// sequence the evaluation order of their sub-expressions.
_ => {},
}
vis.last_expr = expr;
StopEarly::KeepGoing
}
fn check_stmt<'a, 'tcx>(vis: &mut ReadVisitor<'a, 'tcx>, stmt: &'tcx Stmt<'_>) -> StopEarly {
match stmt.kind {
StmtKind::Expr(expr) | StmtKind::Semi(expr) => check_expr(vis, expr),
// If the declaration is of a local variable, check its initializer
// expression if it has one. Otherwise, keep going.
StmtKind::Local(local) => local
.init
.as_ref()
.map_or(StopEarly::KeepGoing, |expr| check_expr(vis, expr)),
StmtKind::Item(..) => StopEarly::KeepGoing,
}
}
/// A visitor that looks for reads from a variable.
struct ReadVisitor<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
/// The ID of the variable we're looking for.
var: HirId,
/// The expressions where the write to the variable occurred (for reporting
/// in the lint).
write_expr: &'tcx Expr<'tcx>,
/// The last (highest in the AST) expression we've checked, so we know not
/// to recheck it.
last_expr: &'tcx Expr<'tcx>,
}
impl<'a, 'tcx> Visitor<'tcx> for ReadVisitor<'a, 'tcx> {
type Map = Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx Expr<'_>) {
if expr.hir_id == self.last_expr.hir_id {
return;
}
if path_to_local_id(expr, self.var) {
// Check that this is a read, not a write.
if !is_in_assignment_position(self.cx, expr) {
span_lint_and_note(
self.cx,
EVAL_ORDER_DEPENDENCE,
expr.span,
&format!("unsequenced read of `{}`", self.cx.tcx.hir().name(self.var)),
Some(self.write_expr.span),
"whether read occurs before this write depends on evaluation order",
);
}
}
match expr.kind {
// We're about to descend a closure. Since we don't know when (or
// if) the closure will be evaluated, any reads in it might not
// occur here (or ever). Like above, bail to avoid false positives.
ExprKind::Closure(_, _, _, _, _) |
// We want to avoid a false positive when a variable name occurs
// only to have its address taken, so we stop here. Technically,
// this misses some weird cases, eg.
//
// ```rust
// let mut x = 0;
// let a = foo(&{x = 1; x}, x);
// ```
//
// TODO: fix this
ExprKind::AddrOf(_, _, _) => {
return;
}
_ => {}
}
walk_expr(self, expr);
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
/// Returns `true` if `expr` is the LHS of an assignment, like `expr = ...`.
fn is_in_assignment_position(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
if let Some(parent) = get_parent_expr(cx, expr) {
if let ExprKind::Assign(lhs, ..) = parent.kind {
return lhs.hir_id == expr.hir_id;
}
}
false
}