rust-clippy/clippy_lints/src/functions.rs

662 lines
23 KiB
Rust

use crate::utils::{
attr_by_name, attrs::is_proc_macro, is_must_use_ty, is_trait_impl_item, iter_input_pats, match_def_path,
must_use_attr, qpath_res, return_ty, snippet, snippet_opt, span_lint, span_lint_and_help, span_lint_and_then,
trait_ref_of_method, type_is_unsafe_function,
};
use rustc_ast::ast::Attribute;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::intravisit;
use rustc_hir::{def::Res, def_id::DefId};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::hir::map::Map;
use rustc_middle::lint::in_external_macro;
use rustc_middle::ty::{self, Ty};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::source_map::Span;
use rustc_target::spec::abi::Abi;
declare_clippy_lint! {
/// **What it does:** Checks for functions with too many parameters.
///
/// **Why is this bad?** Functions with lots of parameters are considered bad
/// style and reduce readability (“what does the 5th parameter mean?”). Consider
/// grouping some parameters into a new type.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// # struct Color;
/// fn foo(x: u32, y: u32, name: &str, c: Color, w: f32, h: f32, a: f32, b: f32) {
/// // ..
/// }
/// ```
pub TOO_MANY_ARGUMENTS,
complexity,
"functions with too many arguments"
}
declare_clippy_lint! {
/// **What it does:** Checks for functions with a large amount of lines.
///
/// **Why is this bad?** Functions with a lot of lines are harder to understand
/// due to having to look at a larger amount of code to understand what the
/// function is doing. Consider splitting the body of the function into
/// multiple functions.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn im_too_long() {
/// println!("");
/// // ... 100 more LoC
/// println!("");
/// }
/// ```
pub TOO_MANY_LINES,
pedantic,
"functions with too many lines"
}
declare_clippy_lint! {
/// **What it does:** Checks for public functions that dereference raw pointer
/// arguments but are not marked unsafe.
///
/// **Why is this bad?** The function should probably be marked `unsafe`, since
/// for an arbitrary raw pointer, there is no way of telling for sure if it is
/// valid.
///
/// **Known problems:**
///
/// * It does not check functions recursively so if the pointer is passed to a
/// private non-`unsafe` function which does the dereferencing, the lint won't
/// trigger.
/// * It only checks for arguments whose type are raw pointers, not raw pointers
/// got from an argument in some other way (`fn foo(bar: &[*const u8])` or
/// `some_argument.get_raw_ptr()`).
///
/// **Example:**
/// ```rust,ignore
/// // Bad
/// pub fn foo(x: *const u8) {
/// println!("{}", unsafe { *x });
/// }
///
/// // Good
/// pub unsafe fn foo(x: *const u8) {
/// println!("{}", unsafe { *x });
/// }
/// ```
pub NOT_UNSAFE_PTR_ARG_DEREF,
correctness,
"public functions dereferencing raw pointer arguments but not marked `unsafe`"
}
declare_clippy_lint! {
/// **What it does:** Checks for a [`#[must_use]`] attribute on
/// unit-returning functions and methods.
///
/// [`#[must_use]`]: https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
///
/// **Why is this bad?** Unit values are useless. The attribute is likely
/// a remnant of a refactoring that removed the return type.
///
/// **Known problems:** None.
///
/// **Examples:**
/// ```rust
/// #[must_use]
/// fn useless() { }
/// ```
pub MUST_USE_UNIT,
style,
"`#[must_use]` attribute on a unit-returning function / method"
}
declare_clippy_lint! {
/// **What it does:** Checks for a [`#[must_use]`] attribute without
/// further information on functions and methods that return a type already
/// marked as `#[must_use]`.
///
/// [`#[must_use]`]: https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
///
/// **Why is this bad?** The attribute isn't needed. Not using the result
/// will already be reported. Alternatively, one can add some text to the
/// attribute to improve the lint message.
///
/// **Known problems:** None.
///
/// **Examples:**
/// ```rust
/// #[must_use]
/// fn double_must_use() -> Result<(), ()> {
/// unimplemented!();
/// }
/// ```
pub DOUBLE_MUST_USE,
style,
"`#[must_use]` attribute on a `#[must_use]`-returning function / method"
}
declare_clippy_lint! {
/// **What it does:** Checks for public functions that have no
/// [`#[must_use]`] attribute, but return something not already marked
/// must-use, have no mutable arg and mutate no statics.
///
/// [`#[must_use]`]: https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
///
/// **Why is this bad?** Not bad at all, this lint just shows places where
/// you could add the attribute.
///
/// **Known problems:** The lint only checks the arguments for mutable
/// types without looking if they are actually changed. On the other hand,
/// it also ignores a broad range of potentially interesting side effects,
/// because we cannot decide whether the programmer intends the function to
/// be called for the side effect or the result. Expect many false
/// positives. At least we don't lint if the result type is unit or already
/// `#[must_use]`.
///
/// **Examples:**
/// ```rust
/// // this could be annotated with `#[must_use]`.
/// fn id<T>(t: T) -> T { t }
/// ```
pub MUST_USE_CANDIDATE,
pedantic,
"function or method that could take a `#[must_use]` attribute"
}
#[derive(Copy, Clone)]
pub struct Functions {
threshold: u64,
max_lines: u64,
}
impl Functions {
pub fn new(threshold: u64, max_lines: u64) -> Self {
Self { threshold, max_lines }
}
}
impl_lint_pass!(Functions => [
TOO_MANY_ARGUMENTS,
TOO_MANY_LINES,
NOT_UNSAFE_PTR_ARG_DEREF,
MUST_USE_UNIT,
DOUBLE_MUST_USE,
MUST_USE_CANDIDATE,
]);
impl<'tcx> LateLintPass<'tcx> for Functions {
fn check_fn(
&mut self,
cx: &LateContext<'tcx>,
kind: intravisit::FnKind<'tcx>,
decl: &'tcx hir::FnDecl<'_>,
body: &'tcx hir::Body<'_>,
span: Span,
hir_id: hir::HirId,
) {
let unsafety = match kind {
intravisit::FnKind::ItemFn(_, _, hir::FnHeader { unsafety, .. }, _, _) => unsafety,
intravisit::FnKind::Method(_, sig, _, _) => sig.header.unsafety,
intravisit::FnKind::Closure(_) => return,
};
// don't warn for implementations, it's not their fault
if !is_trait_impl_item(cx, hir_id) {
// don't lint extern functions decls, it's not their fault either
match kind {
intravisit::FnKind::Method(
_,
&hir::FnSig {
header: hir::FnHeader { abi: Abi::Rust, .. },
..
},
_,
_,
)
| intravisit::FnKind::ItemFn(_, _, hir::FnHeader { abi: Abi::Rust, .. }, _, _) => {
self.check_arg_number(cx, decl, span.with_hi(decl.output.span().hi()))
},
_ => {},
}
}
Self::check_raw_ptr(cx, unsafety, decl, body, hir_id);
self.check_line_number(cx, span, body);
}
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
let attr = must_use_attr(&item.attrs);
if let hir::ItemKind::Fn(ref sig, ref _generics, ref body_id) = item.kind {
if let Some(attr) = attr {
let fn_header_span = item.span.with_hi(sig.decl.output.span().hi());
check_needless_must_use(cx, &sig.decl, item.hir_id, item.span, fn_header_span, attr);
return;
}
if cx.access_levels.is_exported(item.hir_id)
&& !is_proc_macro(cx.sess(), &item.attrs)
&& attr_by_name(&item.attrs, "no_mangle").is_none()
{
check_must_use_candidate(
cx,
&sig.decl,
cx.tcx.hir().body(*body_id),
item.span,
item.hir_id,
item.span.with_hi(sig.decl.output.span().hi()),
"this function could have a `#[must_use]` attribute",
);
}
}
}
fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::ImplItem<'_>) {
if let hir::ImplItemKind::Fn(ref sig, ref body_id) = item.kind {
let attr = must_use_attr(&item.attrs);
if let Some(attr) = attr {
let fn_header_span = item.span.with_hi(sig.decl.output.span().hi());
check_needless_must_use(cx, &sig.decl, item.hir_id, item.span, fn_header_span, attr);
} else if cx.access_levels.is_exported(item.hir_id)
&& !is_proc_macro(cx.sess(), &item.attrs)
&& trait_ref_of_method(cx, item.hir_id).is_none()
{
check_must_use_candidate(
cx,
&sig.decl,
cx.tcx.hir().body(*body_id),
item.span,
item.hir_id,
item.span.with_hi(sig.decl.output.span().hi()),
"this method could have a `#[must_use]` attribute",
);
}
}
}
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::TraitItem<'_>) {
if let hir::TraitItemKind::Fn(ref sig, ref eid) = item.kind {
// don't lint extern functions decls, it's not their fault
if sig.header.abi == Abi::Rust {
self.check_arg_number(cx, &sig.decl, item.span.with_hi(sig.decl.output.span().hi()));
}
let attr = must_use_attr(&item.attrs);
if let Some(attr) = attr {
let fn_header_span = item.span.with_hi(sig.decl.output.span().hi());
check_needless_must_use(cx, &sig.decl, item.hir_id, item.span, fn_header_span, attr);
}
if let hir::TraitFn::Provided(eid) = *eid {
let body = cx.tcx.hir().body(eid);
Self::check_raw_ptr(cx, sig.header.unsafety, &sig.decl, body, item.hir_id);
if attr.is_none() && cx.access_levels.is_exported(item.hir_id) && !is_proc_macro(cx.sess(), &item.attrs)
{
check_must_use_candidate(
cx,
&sig.decl,
body,
item.span,
item.hir_id,
item.span.with_hi(sig.decl.output.span().hi()),
"this method could have a `#[must_use]` attribute",
);
}
}
}
}
}
impl<'tcx> Functions {
fn check_arg_number(self, cx: &LateContext<'_>, decl: &hir::FnDecl<'_>, fn_span: Span) {
let args = decl.inputs.len() as u64;
if args > self.threshold {
span_lint(
cx,
TOO_MANY_ARGUMENTS,
fn_span,
&format!("this function has too many arguments ({}/{})", args, self.threshold),
);
}
}
fn check_line_number(self, cx: &LateContext<'_>, span: Span, body: &'tcx hir::Body<'_>) {
if in_external_macro(cx.sess(), span) {
return;
}
let code_snippet = snippet(cx, body.value.span, "..");
let mut line_count: u64 = 0;
let mut in_comment = false;
let mut code_in_line;
// Skip the surrounding function decl.
let start_brace_idx = code_snippet.find('{').map_or(0, |i| i + 1);
let end_brace_idx = code_snippet.rfind('}').unwrap_or_else(|| code_snippet.len());
let function_lines = code_snippet[start_brace_idx..end_brace_idx].lines();
for mut line in function_lines {
code_in_line = false;
loop {
line = line.trim_start();
if line.is_empty() {
break;
}
if in_comment {
match line.find("*/") {
Some(i) => {
line = &line[i + 2..];
in_comment = false;
continue;
},
None => break,
}
} else {
let multi_idx = line.find("/*").unwrap_or_else(|| line.len());
let single_idx = line.find("//").unwrap_or_else(|| line.len());
code_in_line |= multi_idx > 0 && single_idx > 0;
// Implies multi_idx is below line.len()
if multi_idx < single_idx {
line = &line[multi_idx + 2..];
in_comment = true;
continue;
}
break;
}
}
if code_in_line {
line_count += 1;
}
}
if line_count > self.max_lines {
span_lint(
cx,
TOO_MANY_LINES,
span,
&format!("this function has too many lines ({}/{})", line_count, self.max_lines),
)
}
}
fn check_raw_ptr(
cx: &LateContext<'tcx>,
unsafety: hir::Unsafety,
decl: &'tcx hir::FnDecl<'_>,
body: &'tcx hir::Body<'_>,
hir_id: hir::HirId,
) {
let expr = &body.value;
if unsafety == hir::Unsafety::Normal && cx.access_levels.is_exported(hir_id) {
let raw_ptrs = iter_input_pats(decl, body)
.zip(decl.inputs.iter())
.filter_map(|(arg, ty)| raw_ptr_arg(arg, ty))
.collect::<FxHashSet<_>>();
if !raw_ptrs.is_empty() {
let typeck_results = cx.tcx.typeck_body(body.id());
let mut v = DerefVisitor {
cx,
ptrs: raw_ptrs,
typeck_results,
};
intravisit::walk_expr(&mut v, expr);
}
}
}
}
fn check_needless_must_use(
cx: &LateContext<'_>,
decl: &hir::FnDecl<'_>,
item_id: hir::HirId,
item_span: Span,
fn_header_span: Span,
attr: &Attribute,
) {
if in_external_macro(cx.sess(), item_span) {
return;
}
if returns_unit(decl) {
span_lint_and_then(
cx,
MUST_USE_UNIT,
fn_header_span,
"this unit-returning function has a `#[must_use]` attribute",
|diag| {
diag.span_suggestion(
attr.span,
"remove the attribute",
"".into(),
Applicability::MachineApplicable,
);
},
);
} else if !attr.is_value_str() && is_must_use_ty(cx, return_ty(cx, item_id)) {
span_lint_and_help(
cx,
DOUBLE_MUST_USE,
fn_header_span,
"this function has an empty `#[must_use]` attribute, but returns a type already marked as `#[must_use]`",
None,
"either add some descriptive text or remove the attribute",
);
}
}
fn check_must_use_candidate<'tcx>(
cx: &LateContext<'tcx>,
decl: &'tcx hir::FnDecl<'_>,
body: &'tcx hir::Body<'_>,
item_span: Span,
item_id: hir::HirId,
fn_span: Span,
msg: &str,
) {
if has_mutable_arg(cx, body)
|| mutates_static(cx, body)
|| in_external_macro(cx.sess(), item_span)
|| returns_unit(decl)
|| !cx.access_levels.is_exported(item_id)
|| is_must_use_ty(cx, return_ty(cx, item_id))
{
return;
}
span_lint_and_then(cx, MUST_USE_CANDIDATE, fn_span, msg, |diag| {
if let Some(snippet) = snippet_opt(cx, fn_span) {
diag.span_suggestion(
fn_span,
"add the attribute",
format!("#[must_use] {}", snippet),
Applicability::MachineApplicable,
);
}
});
}
fn returns_unit(decl: &hir::FnDecl<'_>) -> bool {
match decl.output {
hir::FnRetTy::DefaultReturn(_) => true,
hir::FnRetTy::Return(ref ty) => match ty.kind {
hir::TyKind::Tup(ref tys) => tys.is_empty(),
hir::TyKind::Never => true,
_ => false,
},
}
}
fn has_mutable_arg(cx: &LateContext<'_>, body: &hir::Body<'_>) -> bool {
let mut tys = FxHashSet::default();
body.params.iter().any(|param| is_mutable_pat(cx, &param.pat, &mut tys))
}
fn is_mutable_pat(cx: &LateContext<'_>, pat: &hir::Pat<'_>, tys: &mut FxHashSet<DefId>) -> bool {
if let hir::PatKind::Wild = pat.kind {
return false; // ignore `_` patterns
}
let def_id = pat.hir_id.owner.to_def_id();
if cx.tcx.has_typeck_results(def_id) {
is_mutable_ty(cx, &cx.tcx.typeck(def_id.expect_local()).pat_ty(pat), pat.span, tys)
} else {
false
}
}
static KNOWN_WRAPPER_TYS: &[&[&str]] = &[&["alloc", "rc", "Rc"], &["std", "sync", "Arc"]];
fn is_mutable_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, span: Span, tys: &mut FxHashSet<DefId>) -> bool {
match *ty.kind() {
// primitive types are never mutable
ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str => false,
ty::Adt(ref adt, ref substs) => {
tys.insert(adt.did) && !ty.is_freeze(cx.tcx.at(span), cx.param_env)
|| KNOWN_WRAPPER_TYS.iter().any(|path| match_def_path(cx, adt.did, path))
&& substs.types().any(|ty| is_mutable_ty(cx, ty, span, tys))
},
ty::Tuple(ref substs) => substs.types().any(|ty| is_mutable_ty(cx, ty, span, tys)),
ty::Array(ty, _) | ty::Slice(ty) => is_mutable_ty(cx, ty, span, tys),
ty::RawPtr(ty::TypeAndMut { ty, mutbl }) | ty::Ref(_, ty, mutbl) => {
mutbl == hir::Mutability::Mut || is_mutable_ty(cx, ty, span, tys)
},
// calling something constitutes a side effect, so return true on all callables
// also never calls need not be used, so return true for them, too
_ => true,
}
}
fn raw_ptr_arg(arg: &hir::Param<'_>, ty: &hir::Ty<'_>) -> Option<hir::HirId> {
if let (&hir::PatKind::Binding(_, id, _, _), &hir::TyKind::Ptr(_)) = (&arg.pat.kind, &ty.kind) {
Some(id)
} else {
None
}
}
struct DerefVisitor<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
ptrs: FxHashSet<hir::HirId>,
typeck_results: &'a ty::TypeckResults<'tcx>,
}
impl<'a, 'tcx> intravisit::Visitor<'tcx> for DerefVisitor<'a, 'tcx> {
type Map = Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'_>) {
match expr.kind {
hir::ExprKind::Call(ref f, args) => {
let ty = self.typeck_results.expr_ty(f);
if type_is_unsafe_function(self.cx, ty) {
for arg in args {
self.check_arg(arg);
}
}
},
hir::ExprKind::MethodCall(_, _, args, _) => {
let def_id = self.typeck_results.type_dependent_def_id(expr.hir_id).unwrap();
let base_type = self.cx.tcx.type_of(def_id);
if type_is_unsafe_function(self.cx, base_type) {
for arg in args {
self.check_arg(arg);
}
}
},
hir::ExprKind::Unary(hir::UnOp::UnDeref, ref ptr) => self.check_arg(ptr),
_ => (),
}
intravisit::walk_expr(self, expr);
}
fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
intravisit::NestedVisitorMap::None
}
}
impl<'a, 'tcx> DerefVisitor<'a, 'tcx> {
fn check_arg(&self, ptr: &hir::Expr<'_>) {
if let hir::ExprKind::Path(ref qpath) = ptr.kind {
if let Res::Local(id) = qpath_res(self.cx, qpath, ptr.hir_id) {
if self.ptrs.contains(&id) {
span_lint(
self.cx,
NOT_UNSAFE_PTR_ARG_DEREF,
ptr.span,
"this public function dereferences a raw pointer but is not marked `unsafe`",
);
}
}
}
}
}
struct StaticMutVisitor<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
mutates_static: bool,
}
impl<'a, 'tcx> intravisit::Visitor<'tcx> for StaticMutVisitor<'a, 'tcx> {
type Map = Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'_>) {
use hir::ExprKind::{AddrOf, Assign, AssignOp, Call, MethodCall};
if self.mutates_static {
return;
}
match expr.kind {
Call(_, args) | MethodCall(_, _, args, _) => {
let mut tys = FxHashSet::default();
for arg in args {
let def_id = arg.hir_id.owner.to_def_id();
if self.cx.tcx.has_typeck_results(def_id)
&& is_mutable_ty(
self.cx,
self.cx.tcx.typeck(def_id.expect_local()).expr_ty(arg),
arg.span,
&mut tys,
)
&& is_mutated_static(self.cx, arg)
{
self.mutates_static = true;
return;
}
tys.clear();
}
},
Assign(ref target, ..) | AssignOp(_, ref target, _) | AddrOf(_, hir::Mutability::Mut, ref target) => {
self.mutates_static |= is_mutated_static(self.cx, target)
},
_ => {},
}
}
fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
intravisit::NestedVisitorMap::None
}
}
fn is_mutated_static(cx: &LateContext<'_>, e: &hir::Expr<'_>) -> bool {
use hir::ExprKind::{Field, Index, Path};
match e.kind {
Path(ref qpath) => !matches!(qpath_res(cx, qpath, e.hir_id), Res::Local(_)),
Field(ref inner, _) | Index(ref inner, _) => is_mutated_static(cx, inner),
_ => false,
}
}
fn mutates_static<'tcx>(cx: &LateContext<'tcx>, body: &'tcx hir::Body<'_>) -> bool {
let mut v = StaticMutVisitor {
cx,
mutates_static: false,
};
intravisit::walk_expr(&mut v, &body.value);
v.mutates_static
}