rust-clippy/clippy_lints/src/dereference.rs
2022-06-05 16:03:18 -04:00

722 lines
27 KiB
Rust

use clippy_utils::diagnostics::{span_lint_and_sugg, span_lint_and_then};
use clippy_utils::source::{snippet_with_applicability, snippet_with_context};
use clippy_utils::sugg::has_enclosing_paren;
use clippy_utils::ty::peel_mid_ty_refs;
use clippy_utils::{get_parent_expr, get_parent_node, is_lint_allowed, path_to_local};
use rustc_ast::util::parser::{PREC_POSTFIX, PREC_PREFIX};
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::Applicability;
use rustc_hir::{
BindingAnnotation, Body, BodyId, BorrowKind, Destination, Expr, ExprKind, HirId, MatchSource, Mutability, Node,
Pat, PatKind, UnOp,
};
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeckResults};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::{symbol::sym, Span};
declare_clippy_lint! {
/// ### What it does
/// Checks for explicit `deref()` or `deref_mut()` method calls.
///
/// ### Why is this bad?
/// Dereferencing by `&*x` or `&mut *x` is clearer and more concise,
/// when not part of a method chain.
///
/// ### Example
/// ```rust
/// use std::ops::Deref;
/// let a: &mut String = &mut String::from("foo");
/// let b: &str = a.deref();
/// ```
///
/// Use instead:
/// ```rust
/// let a: &mut String = &mut String::from("foo");
/// let b = &*a;
/// ```
///
/// This lint excludes:
/// ```rust,ignore
/// let _ = d.unwrap().deref();
/// ```
#[clippy::version = "1.44.0"]
pub EXPLICIT_DEREF_METHODS,
pedantic,
"Explicit use of deref or deref_mut method while not in a method chain."
}
declare_clippy_lint! {
/// ### What it does
/// Checks for address of operations (`&`) that are going to
/// be dereferenced immediately by the compiler.
///
/// ### Why is this bad?
/// Suggests that the receiver of the expression borrows
/// the expression.
///
/// ### Example
/// ```rust
/// fn fun(_a: &i32) {}
///
/// let x: &i32 = &&&&&&5;
/// fun(&x);
/// ```
///
/// Use instead:
/// ```rust
/// # fn fun(_a: &i32) {}
/// let x: &i32 = &5;
/// fun(x);
/// ```
#[clippy::version = "pre 1.29.0"]
pub NEEDLESS_BORROW,
style,
"taking a reference that is going to be automatically dereferenced"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for `ref` bindings which create a reference to a reference.
///
/// ### Why is this bad?
/// The address-of operator at the use site is clearer about the need for a reference.
///
/// ### Example
/// ```rust
/// let x = Some("");
/// if let Some(ref x) = x {
/// // use `x` here
/// }
/// ```
///
/// Use instead:
/// ```rust
/// let x = Some("");
/// if let Some(x) = x {
/// // use `&x` here
/// }
/// ```
#[clippy::version = "1.54.0"]
pub REF_BINDING_TO_REFERENCE,
pedantic,
"`ref` binding to a reference"
}
impl_lint_pass!(Dereferencing => [
EXPLICIT_DEREF_METHODS,
NEEDLESS_BORROW,
REF_BINDING_TO_REFERENCE,
]);
#[derive(Default)]
pub struct Dereferencing {
state: Option<(State, StateData)>,
// While parsing a `deref` method call in ufcs form, the path to the function is itself an
// expression. This is to store the id of that expression so it can be skipped when
// `check_expr` is called for it.
skip_expr: Option<HirId>,
/// The body the first local was found in. Used to emit lints when the traversal of the body has
/// been finished. Note we can't lint at the end of every body as they can be nested within each
/// other.
current_body: Option<BodyId>,
/// The list of locals currently being checked by the lint.
/// If the value is `None`, then the binding has been seen as a ref pattern, but is not linted.
/// This is needed for or patterns where one of the branches can be linted, but another can not
/// be.
///
/// e.g. `m!(x) | Foo::Bar(ref x)`
ref_locals: FxIndexMap<HirId, Option<RefPat>>,
}
struct StateData {
/// Span of the top level expression
span: Span,
}
enum State {
// Any number of deref method calls.
DerefMethod {
// The number of calls in a sequence which changed the referenced type
ty_changed_count: usize,
is_final_ufcs: bool,
/// The required mutability
target_mut: Mutability,
},
DerefedBorrow {
count: usize,
required_precedence: i8,
msg: &'static str,
},
}
// A reference operation considered by this lint pass
enum RefOp {
Method(Mutability),
Deref,
AddrOf,
}
struct RefPat {
/// Whether every usage of the binding is dereferenced.
always_deref: bool,
/// The spans of all the ref bindings for this local.
spans: Vec<Span>,
/// The applicability of this suggestion.
app: Applicability,
/// All the replacements which need to be made.
replacements: Vec<(Span, String)>,
}
impl<'tcx> LateLintPass<'tcx> for Dereferencing {
#[expect(clippy::too_many_lines)]
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
// Skip path expressions from deref calls. e.g. `Deref::deref(e)`
if Some(expr.hir_id) == self.skip_expr.take() {
return;
}
if let Some(local) = path_to_local(expr) {
self.check_local_usage(cx, expr, local);
}
// Stop processing sub expressions when a macro call is seen
if expr.span.from_expansion() {
if let Some((state, data)) = self.state.take() {
report(cx, expr, state, data);
}
return;
}
let typeck = cx.typeck_results();
let (kind, sub_expr) = if let Some(x) = try_parse_ref_op(cx.tcx, typeck, expr) {
x
} else {
// The whole chain of reference operations has been seen
if let Some((state, data)) = self.state.take() {
report(cx, expr, state, data);
}
return;
};
match (self.state.take(), kind) {
(None, kind) => {
let parent = get_parent_node(cx.tcx, expr.hir_id);
let expr_ty = typeck.expr_ty(expr);
match kind {
RefOp::Method(target_mut)
if !is_lint_allowed(cx, EXPLICIT_DEREF_METHODS, expr.hir_id)
&& is_linted_explicit_deref_position(parent, expr.hir_id, expr.span) =>
{
self.state = Some((
State::DerefMethod {
ty_changed_count: if deref_method_same_type(expr_ty, typeck.expr_ty(sub_expr)) {
0
} else {
1
},
is_final_ufcs: matches!(expr.kind, ExprKind::Call(..)),
target_mut,
},
StateData { span: expr.span },
));
},
RefOp::AddrOf => {
// Find the number of times the borrow is auto-derefed.
let mut iter = find_adjustments(cx.tcx, typeck, expr).iter();
let mut deref_count = 0usize;
let next_adjust = loop {
match iter.next() {
Some(adjust) => {
if !matches!(adjust.kind, Adjust::Deref(_)) {
break Some(adjust);
} else if !adjust.target.is_ref() {
deref_count += 1;
break iter.next();
}
deref_count += 1;
},
None => break None,
};
};
// Determine the required number of references before any can be removed. In all cases the
// reference made by the current expression will be removed. After that there are four cases to
// handle.
//
// 1. Auto-borrow will trigger in the current position, so no further references are required.
// 2. Auto-deref ends at a reference, or the underlying type, so one extra needs to be left to
// handle the automatically inserted re-borrow.
// 3. Auto-deref hits a user-defined `Deref` impl, so at least one reference needs to exist to
// start auto-deref.
// 4. If the chain of non-user-defined derefs ends with a mutable re-borrow, and re-borrow
// adjustments will not be inserted automatically, then leave one further reference to avoid
// moving a mutable borrow.
// e.g.
// fn foo<T>(x: &mut Option<&mut T>, y: &mut T) {
// let x = match x {
// // Removing the borrow will cause `x` to be moved
// Some(x) => &mut *x,
// None => y
// };
// }
let deref_msg =
"this expression creates a reference which is immediately dereferenced by the compiler";
let borrow_msg = "this expression borrows a value the compiler would automatically borrow";
let (required_refs, required_precedence, msg) = if is_auto_borrow_position(parent, expr.hir_id)
{
(1, PREC_POSTFIX, if deref_count == 1 { borrow_msg } else { deref_msg })
} else if let Some(&Adjust::Borrow(AutoBorrow::Ref(_, mutability))) =
next_adjust.map(|a| &a.kind)
{
if matches!(mutability, AutoBorrowMutability::Mut { .. })
&& !is_auto_reborrow_position(parent)
{
(3, 0, deref_msg)
} else {
(2, 0, deref_msg)
}
} else {
(2, 0, deref_msg)
};
if deref_count >= required_refs {
self.state = Some((
State::DerefedBorrow {
// One of the required refs is for the current borrow expression, the remaining ones
// can't be removed without breaking the code. See earlier comment.
count: deref_count - required_refs,
required_precedence,
msg,
},
StateData { span: expr.span },
));
}
},
_ => (),
}
},
(
Some((
State::DerefMethod {
target_mut,
ty_changed_count,
..
},
data,
)),
RefOp::Method(_),
) => {
self.state = Some((
State::DerefMethod {
ty_changed_count: if deref_method_same_type(typeck.expr_ty(expr), typeck.expr_ty(sub_expr)) {
ty_changed_count
} else {
ty_changed_count + 1
},
is_final_ufcs: matches!(expr.kind, ExprKind::Call(..)),
target_mut,
},
data,
));
},
(
Some((
State::DerefedBorrow {
count,
required_precedence,
msg,
},
data,
)),
RefOp::AddrOf,
) if count != 0 => {
self.state = Some((
State::DerefedBorrow {
count: count - 1,
required_precedence,
msg,
},
data,
));
},
(Some((state, data)), _) => report(cx, expr, state, data),
}
}
fn check_pat(&mut self, cx: &LateContext<'tcx>, pat: &'tcx Pat<'_>) {
if let PatKind::Binding(BindingAnnotation::Ref, id, name, _) = pat.kind {
if let Some(opt_prev_pat) = self.ref_locals.get_mut(&id) {
// This binding id has been seen before. Add this pattern to the list of changes.
if let Some(prev_pat) = opt_prev_pat {
if pat.span.from_expansion() {
// Doesn't match the context of the previous pattern. Can't lint here.
*opt_prev_pat = None;
} else {
prev_pat.spans.push(pat.span);
prev_pat.replacements.push((
pat.span,
snippet_with_context(cx, name.span, pat.span.ctxt(), "..", &mut prev_pat.app)
.0
.into(),
));
}
}
return;
}
if_chain! {
if !pat.span.from_expansion();
if let ty::Ref(_, tam, _) = *cx.typeck_results().pat_ty(pat).kind();
// only lint immutable refs, because borrowed `&mut T` cannot be moved out
if let ty::Ref(_, _, Mutability::Not) = *tam.kind();
then {
let mut app = Applicability::MachineApplicable;
let snip = snippet_with_context(cx, name.span, pat.span.ctxt(), "..", &mut app).0;
self.current_body = self.current_body.or(cx.enclosing_body);
self.ref_locals.insert(
id,
Some(RefPat {
always_deref: true,
spans: vec![pat.span],
app,
replacements: vec![(pat.span, snip.into())],
}),
);
}
}
}
}
fn check_body_post(&mut self, cx: &LateContext<'tcx>, body: &'tcx Body<'_>) {
if Some(body.id()) == self.current_body {
for pat in self.ref_locals.drain(..).filter_map(|(_, x)| x) {
let replacements = pat.replacements;
let app = pat.app;
span_lint_and_then(
cx,
if pat.always_deref {
NEEDLESS_BORROW
} else {
REF_BINDING_TO_REFERENCE
},
pat.spans,
"this pattern creates a reference to a reference",
|diag| {
diag.multipart_suggestion("try this", replacements, app);
},
);
}
self.current_body = None;
}
}
}
fn try_parse_ref_op<'tcx>(
tcx: TyCtxt<'tcx>,
typeck: &'tcx TypeckResults<'_>,
expr: &'tcx Expr<'_>,
) -> Option<(RefOp, &'tcx Expr<'tcx>)> {
let (def_id, arg) = match expr.kind {
ExprKind::MethodCall(_, [arg], _) => (typeck.type_dependent_def_id(expr.hir_id)?, arg),
ExprKind::Call(
Expr {
kind: ExprKind::Path(path),
hir_id,
..
},
[arg],
) => (typeck.qpath_res(path, *hir_id).opt_def_id()?, arg),
ExprKind::Unary(UnOp::Deref, sub_expr) if !typeck.expr_ty(sub_expr).is_unsafe_ptr() => {
return Some((RefOp::Deref, sub_expr));
},
ExprKind::AddrOf(BorrowKind::Ref, _, sub_expr) => return Some((RefOp::AddrOf, sub_expr)),
_ => return None,
};
if tcx.is_diagnostic_item(sym::deref_method, def_id) {
Some((RefOp::Method(Mutability::Not), arg))
} else if tcx.trait_of_item(def_id)? == tcx.lang_items().deref_mut_trait()? {
Some((RefOp::Method(Mutability::Mut), arg))
} else {
None
}
}
// Checks whether the type for a deref call actually changed the type, not just the mutability of
// the reference.
fn deref_method_same_type<'tcx>(result_ty: Ty<'tcx>, arg_ty: Ty<'tcx>) -> bool {
match (result_ty.kind(), arg_ty.kind()) {
(ty::Ref(_, result_ty, _), ty::Ref(_, arg_ty, _)) => result_ty == arg_ty,
// The result type for a deref method is always a reference
// Not matching the previous pattern means the argument type is not a reference
// This means that the type did change
_ => false,
}
}
// Checks whether the parent node is a suitable context for switching from a deref method to the
// deref operator.
fn is_linted_explicit_deref_position(parent: Option<Node<'_>>, child_id: HirId, child_span: Span) -> bool {
let parent = match parent {
Some(Node::Expr(e)) if e.span.ctxt() == child_span.ctxt() => e,
_ => return true,
};
match parent.kind {
// Leave deref calls in the middle of a method chain.
// e.g. x.deref().foo()
ExprKind::MethodCall(_, [self_arg, ..], _) if self_arg.hir_id == child_id => false,
// Leave deref calls resulting in a called function
// e.g. (x.deref())()
ExprKind::Call(func_expr, _) if func_expr.hir_id == child_id => false,
// Makes an ugly suggestion
// e.g. *x.deref() => *&*x
ExprKind::Unary(UnOp::Deref, _)
// Postfix expressions would require parens
| ExprKind::Match(_, _, MatchSource::TryDesugar | MatchSource::AwaitDesugar)
| ExprKind::Field(..)
| ExprKind::Index(..)
| ExprKind::Err => false,
ExprKind::Box(..)
| ExprKind::ConstBlock(..)
| ExprKind::Array(_)
| ExprKind::Call(..)
| ExprKind::MethodCall(..)
| ExprKind::Tup(..)
| ExprKind::Binary(..)
| ExprKind::Unary(..)
| ExprKind::Lit(..)
| ExprKind::Cast(..)
| ExprKind::Type(..)
| ExprKind::DropTemps(..)
| ExprKind::If(..)
| ExprKind::Loop(..)
| ExprKind::Match(..)
| ExprKind::Let(..)
| ExprKind::Closure(..)
| ExprKind::Block(..)
| ExprKind::Assign(..)
| ExprKind::AssignOp(..)
| ExprKind::Path(..)
| ExprKind::AddrOf(..)
| ExprKind::Break(..)
| ExprKind::Continue(..)
| ExprKind::Ret(..)
| ExprKind::InlineAsm(..)
| ExprKind::Struct(..)
| ExprKind::Repeat(..)
| ExprKind::Yield(..) => true,
}
}
/// Checks if the given expression is in a position which can be auto-reborrowed.
/// Note: This is only correct assuming auto-deref is already occurring.
fn is_auto_reborrow_position(parent: Option<Node<'_>>) -> bool {
match parent {
Some(Node::Expr(parent)) => matches!(parent.kind, ExprKind::MethodCall(..) | ExprKind::Call(..)),
Some(Node::Local(_)) => true,
_ => false,
}
}
/// Checks if the given expression is a position which can auto-borrow.
fn is_auto_borrow_position(parent: Option<Node<'_>>, child_id: HirId) -> bool {
if let Some(Node::Expr(parent)) = parent {
match parent.kind {
// ExprKind::MethodCall(_, [self_arg, ..], _) => self_arg.hir_id == child_id,
ExprKind::Field(..) => true,
ExprKind::Call(f, _) => f.hir_id == child_id,
_ => false,
}
} else {
false
}
}
/// Adjustments are sometimes made in the parent block rather than the expression itself.
fn find_adjustments<'tcx>(
tcx: TyCtxt<'tcx>,
typeck: &'tcx TypeckResults<'tcx>,
expr: &'tcx Expr<'tcx>,
) -> &'tcx [Adjustment<'tcx>] {
let map = tcx.hir();
let mut iter = map.parent_iter(expr.hir_id);
let mut prev = expr;
loop {
match typeck.expr_adjustments(prev) {
[] => (),
a => break a,
};
match iter.next().map(|(_, x)| x) {
Some(Node::Block(_)) => {
if let Some((_, Node::Expr(e))) = iter.next() {
prev = e;
} else {
// This shouldn't happen. Blocks are always contained in an expression.
break &[];
}
},
Some(Node::Expr(&Expr {
kind: ExprKind::Break(Destination { target_id: Ok(id), .. }, _),
..
})) => {
if let Some(Node::Expr(e)) = map.find(id) {
prev = e;
iter = map.parent_iter(id);
} else {
// This shouldn't happen. The destination should exist.
break &[];
}
},
_ => break &[],
}
}
}
#[expect(clippy::needless_pass_by_value)]
fn report<'tcx>(cx: &LateContext<'tcx>, expr: &Expr<'tcx>, state: State, data: StateData) {
match state {
State::DerefMethod {
ty_changed_count,
is_final_ufcs,
target_mut,
} => {
let mut app = Applicability::MachineApplicable;
let (expr_str, expr_is_macro_call) = snippet_with_context(cx, expr.span, data.span.ctxt(), "..", &mut app);
let ty = cx.typeck_results().expr_ty(expr);
let (_, ref_count) = peel_mid_ty_refs(ty);
let deref_str = if ty_changed_count >= ref_count && ref_count != 0 {
// a deref call changing &T -> &U requires two deref operators the first time
// this occurs. One to remove the reference, a second to call the deref impl.
"*".repeat(ty_changed_count + 1)
} else {
"*".repeat(ty_changed_count)
};
let addr_of_str = if ty_changed_count < ref_count {
// Check if a reborrow from &mut T -> &T is required.
if target_mut == Mutability::Not && matches!(ty.kind(), ty::Ref(_, _, Mutability::Mut)) {
"&*"
} else {
""
}
} else if target_mut == Mutability::Mut {
"&mut "
} else {
"&"
};
let expr_str = if !expr_is_macro_call && is_final_ufcs && expr.precedence().order() < PREC_PREFIX {
format!("({})", expr_str)
} else {
expr_str.into_owned()
};
span_lint_and_sugg(
cx,
EXPLICIT_DEREF_METHODS,
data.span,
match target_mut {
Mutability::Not => "explicit `deref` method call",
Mutability::Mut => "explicit `deref_mut` method call",
},
"try this",
format!("{}{}{}", addr_of_str, deref_str, expr_str),
app,
);
},
State::DerefedBorrow {
required_precedence,
msg,
..
} => {
let mut app = Applicability::MachineApplicable;
let snip = snippet_with_context(cx, expr.span, data.span.ctxt(), "..", &mut app).0;
span_lint_and_sugg(
cx,
NEEDLESS_BORROW,
data.span,
msg,
"change this to",
if required_precedence > expr.precedence().order() && !has_enclosing_paren(&snip) {
format!("({})", snip)
} else {
snip.into()
},
app,
);
},
}
}
impl Dereferencing {
fn check_local_usage<'tcx>(&mut self, cx: &LateContext<'tcx>, e: &Expr<'tcx>, local: HirId) {
if let Some(outer_pat) = self.ref_locals.get_mut(&local) {
if let Some(pat) = outer_pat {
// Check for auto-deref
if !matches!(
cx.typeck_results().expr_adjustments(e),
[
Adjustment {
kind: Adjust::Deref(_),
..
},
Adjustment {
kind: Adjust::Deref(_),
..
},
..
]
) {
match get_parent_expr(cx, e) {
// Field accesses are the same no matter the number of references.
Some(Expr {
kind: ExprKind::Field(..),
..
}) => (),
Some(&Expr {
span,
kind: ExprKind::Unary(UnOp::Deref, _),
..
}) if !span.from_expansion() => {
// Remove explicit deref.
let snip = snippet_with_context(cx, e.span, span.ctxt(), "..", &mut pat.app).0;
pat.replacements.push((span, snip.into()));
},
Some(parent) if !parent.span.from_expansion() => {
// Double reference might be needed at this point.
if parent.precedence().order() == PREC_POSTFIX {
// Parentheses would be needed here, don't lint.
*outer_pat = None;
} else {
pat.always_deref = false;
let snip = snippet_with_context(cx, e.span, parent.span.ctxt(), "..", &mut pat.app).0;
pat.replacements.push((e.span, format!("&{}", snip)));
}
},
_ if !e.span.from_expansion() => {
// Double reference might be needed at this point.
pat.always_deref = false;
let snip = snippet_with_applicability(cx, e.span, "..", &mut pat.app);
pat.replacements.push((e.span, format!("&{}", snip)));
},
// Edge case for macros. The span of the identifier will usually match the context of the
// binding, but not if the identifier was created in a macro. e.g. `concat_idents` and proc
// macros
_ => *outer_pat = None,
}
}
}
}
}
}