rust-clippy/clippy_lints/src/derive.rs

185 lines
6.3 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use rustc::lint::*;
use rustc::ty::subst::Subst;
use rustc::ty::TypeVariants;
use rustc::ty;
use rustc::hir::*;
use syntax::ast::{Attribute, MetaItemKind};
use syntax::codemap::Span;
use utils::paths;
use utils::{match_path, span_lint_and_then};
/// **What it does:** Checks for deriving `Hash` but implementing `PartialEq`
/// explicitly.
///
/// **Why is this bad?** The implementation of these traits must agree (for
/// example for use with `HashMap`) so its probably a bad idea to use a
/// default-generated `Hash` implementation with an explicitly defined
/// `PartialEq`. In particular, the following must hold for any type:
///
/// ```rust
/// k1 == k2 ⇒ hash(k1) == hash(k2)
/// ```
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// #[derive(Hash)]
/// struct Foo;
///
/// impl PartialEq for Foo {
/// ...
/// }
/// ```
declare_lint! {
pub DERIVE_HASH_XOR_EQ,
Warn,
"deriving `Hash` but implementing `PartialEq` explicitly"
}
/// **What it does:** Checks for explicit `Clone` implementations for `Copy`
/// types.
///
/// **Why is this bad?** To avoid surprising behaviour, these traits should
/// agree and the behaviour of `Copy` cannot be overridden. In almost all
/// situations a `Copy` type should have a `Clone` implementation that does
/// nothing more than copy the object, which is what `#[derive(Copy, Clone)]`
/// gets you.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// #[derive(Copy)]
/// struct Foo;
///
/// impl Clone for Foo {
/// ..
/// }
/// ```
declare_lint! {
pub EXPL_IMPL_CLONE_ON_COPY,
Warn,
"implementing `Clone` explicitly on `Copy` types"
}
pub struct Derive;
impl LintPass for Derive {
fn get_lints(&self) -> LintArray {
lint_array!(EXPL_IMPL_CLONE_ON_COPY, DERIVE_HASH_XOR_EQ)
}
}
impl LateLintPass for Derive {
fn check_item(&mut self, cx: &LateContext, item: &Item) {
if let ItemImpl(_, _, _, Some(ref trait_ref), _, _) = item.node {
let ty = cx.tcx.lookup_item_type(cx.tcx.map.local_def_id(item.id)).ty;
let is_automatically_derived = item.attrs.iter().any(is_automatically_derived);
check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived);
if !is_automatically_derived {
check_copy_clone(cx, item, trait_ref, ty);
}
}
}
}
/// Implementation of the `DERIVE_HASH_XOR_EQ` lint.
fn check_hash_peq<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, span: Span, trait_ref: &TraitRef, ty: ty::Ty<'tcx>,
hash_is_automatically_derived: bool) {
if_let_chain! {[
match_path(&trait_ref.path, &paths::HASH),
let Some(peq_trait_def_id) = cx.tcx.lang_items.eq_trait()
], {
let peq_trait_def = cx.tcx.lookup_trait_def(peq_trait_def_id);
// Look for the PartialEq implementations for `ty`
peq_trait_def.for_each_relevant_impl(cx.tcx, ty, |impl_id| {
let peq_is_automatically_derived = cx.tcx.get_attrs(impl_id).iter().any(is_automatically_derived);
if peq_is_automatically_derived == hash_is_automatically_derived {
return;
}
let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation");
// Only care about `impl PartialEq<Foo> for Foo`
// For `impl PartialEq<B> for A, input_types is [A, B]
if trait_ref.substs.type_at(1) == ty {
let mess = if peq_is_automatically_derived {
"you are implementing `Hash` explicitly but have derived `PartialEq`"
} else {
"you are deriving `Hash` but have implemented `PartialEq` explicitly"
};
span_lint_and_then(
cx, DERIVE_HASH_XOR_EQ, span,
mess,
|db| {
if let Some(node_id) = cx.tcx.map.as_local_node_id(impl_id) {
db.span_note(
cx.tcx.map.span(node_id),
"`PartialEq` implemented here"
);
}
});
}
});
}}
}
/// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint.
fn check_copy_clone<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, item: &Item, trait_ref: &TraitRef, ty: ty::Ty<'tcx>) {
if match_path(&trait_ref.path, &paths::CLONE_TRAIT) {
let parameter_environment = ty::ParameterEnvironment::for_item(cx.tcx, item.id);
let subst_ty = ty.subst(cx.tcx, parameter_environment.free_substs);
if subst_ty.moves_by_default(cx.tcx.global_tcx(), &parameter_environment, item.span) {
return; // ty is not Copy
}
match ty.sty {
TypeVariants::TyAdt(def, _) if def.is_union() => return,
// Some types are not Clone by default but could be cloned “by hand” if necessary
TypeVariants::TyAdt(def, substs) => {
for variant in &def.variants {
for field in &variant.fields {
match field.ty(cx.tcx, substs).sty {
TypeVariants::TyArray(_, size) if size > 32 => {
return;
}
TypeVariants::TyFnPtr(..) => {
return;
}
TypeVariants::TyTuple(tys) if tys.len() > 12 => {
return;
}
_ => (),
}
}
}
}
_ => (),
}
span_lint_and_then(cx,
EXPL_IMPL_CLONE_ON_COPY,
item.span,
"you are implementing `Clone` explicitly on a `Copy` type",
|db| {
db.span_note(item.span, "consider deriving `Clone` or removing `Copy`");
});
}
}
/// Checks for the `#[automatically_derived]` attribute all `#[derive]`d implementations have.
fn is_automatically_derived(attr: &Attribute) -> bool {
if let MetaItemKind::Word(ref word) = attr.node.value.node {
word == &"automatically_derived"
} else {
false
}
}