rust-clippy/clippy_lints/src/matches/match_same_arms.rs

419 lines
18 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::source::snippet;
use clippy_utils::{path_to_local, search_same, SpanlessEq, SpanlessHash};
use core::cmp::Ordering;
use core::iter;
use core::slice;
use rustc_arena::DroplessArena;
use rustc_ast::ast::LitKind;
use rustc_errors::Applicability;
use rustc_hir::def_id::DefId;
use rustc_hir::{Arm, Expr, ExprKind, HirId, HirIdMap, HirIdSet, Pat, PatKind, RangeEnd};
use rustc_lint::LateContext;
use rustc_middle::ty;
use rustc_span::Symbol;
use std::collections::hash_map::Entry;
use super::MATCH_SAME_ARMS;
#[allow(clippy::too_many_lines)]
pub(super) fn check<'tcx>(cx: &LateContext<'tcx>, arms: &'tcx [Arm<'_>]) {
let hash = |&(_, arm): &(usize, &Arm<'_>)| -> u64 {
let mut h = SpanlessHash::new(cx);
h.hash_expr(arm.body);
h.finish()
};
let arena = DroplessArena::default();
let normalized_pats: Vec<_> = arms
.iter()
.map(|a| NormalizedPat::from_pat(cx, &arena, a.pat))
.collect();
// The furthast forwards a pattern can move without semantic changes
let forwards_blocking_idxs: Vec<_> = normalized_pats
.iter()
.enumerate()
.map(|(i, pat)| {
normalized_pats[i + 1..]
.iter()
.enumerate()
.find_map(|(j, other)| pat.has_overlapping_values(other).then(|| i + 1 + j))
.unwrap_or(normalized_pats.len())
})
.collect();
// The furthast backwards a pattern can move without semantic changes
let backwards_blocking_idxs: Vec<_> = normalized_pats
.iter()
.enumerate()
.map(|(i, pat)| {
normalized_pats[..i]
.iter()
.enumerate()
.rev()
.zip(forwards_blocking_idxs[..i].iter().copied().rev())
.skip_while(|&(_, forward_block)| forward_block > i)
.find_map(|((j, other), forward_block)| {
(forward_block == i || pat.has_overlapping_values(other)).then(|| j)
})
.unwrap_or(0)
})
.collect();
let eq = |&(lindex, lhs): &(usize, &Arm<'_>), &(rindex, rhs): &(usize, &Arm<'_>)| -> bool {
let min_index = usize::min(lindex, rindex);
let max_index = usize::max(lindex, rindex);
let mut local_map: HirIdMap<HirId> = HirIdMap::default();
let eq_fallback = |a: &Expr<'_>, b: &Expr<'_>| {
if_chain! {
if let Some(a_id) = path_to_local(a);
if let Some(b_id) = path_to_local(b);
let entry = match local_map.entry(a_id) {
Entry::Vacant(entry) => entry,
// check if using the same bindings as before
Entry::Occupied(entry) => return *entry.get() == b_id,
};
// the names technically don't have to match; this makes the lint more conservative
if cx.tcx.hir().name(a_id) == cx.tcx.hir().name(b_id);
if cx.typeck_results().expr_ty(a) == cx.typeck_results().expr_ty(b);
if pat_contains_local(lhs.pat, a_id);
if pat_contains_local(rhs.pat, b_id);
then {
entry.insert(b_id);
true
} else {
false
}
}
};
// Arms with a guard are ignored, those cant always be merged together
// If both arms overlap with an arm in between then these can't be merged either.
!(backwards_blocking_idxs[max_index] > min_index && forwards_blocking_idxs[min_index] < max_index)
&& lhs.guard.is_none()
&& rhs.guard.is_none()
&& SpanlessEq::new(cx)
.expr_fallback(eq_fallback)
.eq_expr(lhs.body, rhs.body)
// these checks could be removed to allow unused bindings
&& bindings_eq(lhs.pat, local_map.keys().copied().collect())
&& bindings_eq(rhs.pat, local_map.values().copied().collect())
};
let indexed_arms: Vec<(usize, &Arm<'_>)> = arms.iter().enumerate().collect();
for (&(i, arm1), &(j, arm2)) in search_same(&indexed_arms, hash, eq) {
if matches!(arm2.pat.kind, PatKind::Wild) {
span_lint_and_then(
cx,
MATCH_SAME_ARMS,
arm1.span,
"this match arm has an identical body to the `_` wildcard arm",
|diag| {
diag.span_suggestion(
arm1.span,
"try removing the arm",
String::new(),
Applicability::MaybeIncorrect,
)
.help("or try changing either arm body")
.span_note(arm2.span, "`_` wildcard arm here");
},
);
} else {
let back_block = backwards_blocking_idxs[j];
let (keep_arm, move_arm) = if back_block < i || (back_block == 0 && forwards_blocking_idxs[i] <= j) {
(arm1, arm2)
} else {
(arm2, arm1)
};
span_lint_and_then(
cx,
MATCH_SAME_ARMS,
keep_arm.span,
"this match arm has an identical body to another arm",
|diag| {
let move_pat_snip = snippet(cx, move_arm.pat.span, "<pat2>");
let keep_pat_snip = snippet(cx, keep_arm.pat.span, "<pat1>");
diag.span_suggestion(
keep_arm.pat.span,
"try merging the arm patterns",
format!("{} | {}", keep_pat_snip, move_pat_snip),
Applicability::MaybeIncorrect,
)
.help("or try changing either arm body")
.span_note(move_arm.span, "other arm here");
},
);
}
}
}
#[derive(Clone, Copy)]
enum NormalizedPat<'a> {
Wild,
Struct(Option<DefId>, &'a [(Symbol, Self)]),
Tuple(Option<DefId>, &'a [Self]),
Or(&'a [Self]),
Path(Option<DefId>),
LitStr(Symbol),
LitBytes(&'a [u8]),
LitInt(u128),
LitBool(bool),
Range(PatRange),
/// A slice pattern. If the second value is `None`, then this matches an exact size. Otherwise
/// the first value contains everything before the `..` wildcard pattern, and the second value
/// contains everything afterwards. Note that either side, or both sides, may contain zero
/// patterns.
Slice(&'a [Self], Option<&'a [Self]>),
}
#[derive(Clone, Copy)]
struct PatRange {
start: u128,
end: u128,
bounds: RangeEnd,
}
impl PatRange {
fn contains(&self, x: u128) -> bool {
x >= self.start
&& match self.bounds {
RangeEnd::Included => x <= self.end,
RangeEnd::Excluded => x < self.end,
}
}
fn overlaps(&self, other: &Self) -> bool {
// Note: Empty ranges are impossible, so this is correct even though it would return true if an
// empty exclusive range were to reside within an inclusive range.
(match self.bounds {
RangeEnd::Included => self.end >= other.start,
RangeEnd::Excluded => self.end > other.start,
} && match other.bounds {
RangeEnd::Included => self.start <= other.end,
RangeEnd::Excluded => self.start < other.end,
})
}
}
/// Iterates over the pairs of fields with matching names.
fn iter_matching_struct_fields<'a>(
left: &'a [(Symbol, NormalizedPat<'a>)],
right: &'a [(Symbol, NormalizedPat<'a>)],
) -> impl Iterator<Item = (&'a NormalizedPat<'a>, &'a NormalizedPat<'a>)> + 'a {
struct Iter<'a>(
slice::Iter<'a, (Symbol, NormalizedPat<'a>)>,
slice::Iter<'a, (Symbol, NormalizedPat<'a>)>,
);
impl<'a> Iterator for Iter<'a> {
type Item = (&'a NormalizedPat<'a>, &'a NormalizedPat<'a>);
fn next(&mut self) -> Option<Self::Item> {
// Note: all the fields in each slice are sorted by symbol value.
let mut left = self.0.next()?;
let mut right = self.1.next()?;
loop {
match left.0.cmp(&right.0) {
Ordering::Equal => return Some((&left.1, &right.1)),
Ordering::Less => left = self.0.next()?,
Ordering::Greater => right = self.1.next()?,
}
}
}
}
Iter(left.iter(), right.iter())
}
#[allow(clippy::similar_names)]
impl<'a> NormalizedPat<'a> {
#[allow(clippy::too_many_lines)]
fn from_pat(cx: &LateContext<'_>, arena: &'a DroplessArena, pat: &'a Pat<'_>) -> Self {
match pat.kind {
PatKind::Wild | PatKind::Binding(.., None) => Self::Wild,
PatKind::Binding(.., Some(pat)) | PatKind::Box(pat) | PatKind::Ref(pat, _) => {
Self::from_pat(cx, arena, pat)
},
PatKind::Struct(ref path, fields, _) => {
let fields =
arena.alloc_from_iter(fields.iter().map(|f| (f.ident.name, Self::from_pat(cx, arena, f.pat))));
fields.sort_by_key(|&(name, _)| name);
Self::Struct(cx.qpath_res(path, pat.hir_id).opt_def_id(), fields)
},
PatKind::TupleStruct(ref path, pats, wild_idx) => {
let adt = match cx.typeck_results().pat_ty(pat).ty_adt_def() {
Some(x) => x,
None => return Self::Wild,
};
let (var_id, variant) = if adt.is_enum() {
match cx.qpath_res(path, pat.hir_id).opt_def_id() {
Some(x) => (Some(x), adt.variant_with_ctor_id(x)),
None => return Self::Wild,
}
} else {
(None, adt.non_enum_variant())
};
let (front, back) = match wild_idx {
Some(i) => pats.split_at(i),
None => (pats, [].as_slice()),
};
let pats = arena.alloc_from_iter(
front
.iter()
.map(|pat| Self::from_pat(cx, arena, pat))
.chain(iter::repeat_with(|| Self::Wild).take(variant.fields.len() - pats.len()))
.chain(back.iter().map(|pat| Self::from_pat(cx, arena, pat))),
);
Self::Tuple(var_id, pats)
},
PatKind::Or(pats) => Self::Or(arena.alloc_from_iter(pats.iter().map(|pat| Self::from_pat(cx, arena, pat)))),
PatKind::Path(ref path) => Self::Path(cx.qpath_res(path, pat.hir_id).opt_def_id()),
PatKind::Tuple(pats, wild_idx) => {
let field_count = match cx.typeck_results().pat_ty(pat).kind() {
ty::Tuple(subs) => subs.len(),
_ => return Self::Wild,
};
let (front, back) = match wild_idx {
Some(i) => pats.split_at(i),
None => (pats, [].as_slice()),
};
let pats = arena.alloc_from_iter(
front
.iter()
.map(|pat| Self::from_pat(cx, arena, pat))
.chain(iter::repeat_with(|| Self::Wild).take(field_count - pats.len()))
.chain(back.iter().map(|pat| Self::from_pat(cx, arena, pat))),
);
Self::Tuple(None, pats)
},
PatKind::Lit(e) => match &e.kind {
// TODO: Handle negative integers. They're currently treated as a wild match.
ExprKind::Lit(lit) => match lit.node {
LitKind::Str(sym, _) => Self::LitStr(sym),
LitKind::ByteStr(ref bytes) => Self::LitBytes(&**bytes),
LitKind::Byte(val) => Self::LitInt(val.into()),
LitKind::Char(val) => Self::LitInt(val.into()),
LitKind::Int(val, _) => Self::LitInt(val),
LitKind::Bool(val) => Self::LitBool(val),
LitKind::Float(..) | LitKind::Err(_) => Self::Wild,
},
_ => Self::Wild,
},
PatKind::Range(start, end, bounds) => {
// TODO: Handle negative integers. They're currently treated as a wild match.
let start = match start {
None => 0,
Some(e) => match &e.kind {
ExprKind::Lit(lit) => match lit.node {
LitKind::Int(val, _) => val,
LitKind::Char(val) => val.into(),
LitKind::Byte(val) => val.into(),
_ => return Self::Wild,
},
_ => return Self::Wild,
},
};
let (end, bounds) = match end {
None => (u128::MAX, RangeEnd::Included),
Some(e) => match &e.kind {
ExprKind::Lit(lit) => match lit.node {
LitKind::Int(val, _) => (val, bounds),
LitKind::Char(val) => (val.into(), bounds),
LitKind::Byte(val) => (val.into(), bounds),
_ => return Self::Wild,
},
_ => return Self::Wild,
},
};
Self::Range(PatRange { start, end, bounds })
},
PatKind::Slice(front, wild_pat, back) => Self::Slice(
arena.alloc_from_iter(front.iter().map(|pat| Self::from_pat(cx, arena, pat))),
wild_pat.map(|_| &*arena.alloc_from_iter(back.iter().map(|pat| Self::from_pat(cx, arena, pat)))),
),
}
}
/// Checks if two patterns overlap in the values they can match assuming they are for the same
/// type.
fn has_overlapping_values(&self, other: &Self) -> bool {
match (*self, *other) {
(Self::Wild, _) | (_, Self::Wild) => true,
(Self::Or(pats), ref other) | (ref other, Self::Or(pats)) => {
pats.iter().any(|pat| pat.has_overlapping_values(other))
},
(Self::Struct(lpath, lfields), Self::Struct(rpath, rfields)) => {
if lpath != rpath {
return false;
}
iter_matching_struct_fields(lfields, rfields).all(|(lpat, rpat)| lpat.has_overlapping_values(rpat))
},
(Self::Tuple(lpath, lpats), Self::Tuple(rpath, rpats)) => {
if lpath != rpath {
return false;
}
lpats
.iter()
.zip(rpats.iter())
.all(|(lpat, rpat)| lpat.has_overlapping_values(rpat))
},
(Self::Path(x), Self::Path(y)) => x == y,
(Self::LitStr(x), Self::LitStr(y)) => x == y,
(Self::LitBytes(x), Self::LitBytes(y)) => x == y,
(Self::LitInt(x), Self::LitInt(y)) => x == y,
(Self::LitBool(x), Self::LitBool(y)) => x == y,
(Self::Range(ref x), Self::Range(ref y)) => x.overlaps(y),
(Self::Range(ref range), Self::LitInt(x)) | (Self::LitInt(x), Self::Range(ref range)) => range.contains(x),
(Self::Slice(lpats, None), Self::Slice(rpats, None)) => {
lpats.len() == rpats.len() && lpats.iter().zip(rpats.iter()).all(|(x, y)| x.has_overlapping_values(y))
},
(Self::Slice(pats, None), Self::Slice(front, Some(back)))
| (Self::Slice(front, Some(back)), Self::Slice(pats, None)) => {
// Here `pats` is an exact size match. If the combined lengths of `front` and `back` are greater
// then the minium length required will be greater than the length of `pats`.
if pats.len() < front.len() + back.len() {
return false;
}
pats[..front.len()]
.iter()
.zip(front.iter())
.chain(pats[pats.len() - back.len()..].iter().zip(back.iter()))
.all(|(x, y)| x.has_overlapping_values(y))
},
(Self::Slice(lfront, Some(lback)), Self::Slice(rfront, Some(rback))) => lfront
.iter()
.zip(rfront.iter())
.chain(lback.iter().rev().zip(rback.iter().rev()))
.all(|(x, y)| x.has_overlapping_values(y)),
// Enums can mix unit variants with tuple/struct variants. These can never overlap.
(Self::Path(_), Self::Tuple(..) | Self::Struct(..))
| (Self::Tuple(..) | Self::Struct(..), Self::Path(_)) => false,
// Tuples can be matched like a struct.
(Self::Tuple(x, _), Self::Struct(y, _)) | (Self::Struct(x, _), Self::Tuple(y, _)) => {
// TODO: check fields here.
x == y
},
// TODO: Lit* with Path, Range with Path, LitBytes with Slice
_ => true,
}
}
}
fn pat_contains_local(pat: &Pat<'_>, id: HirId) -> bool {
let mut result = false;
pat.walk_short(|p| {
result |= matches!(p.kind, PatKind::Binding(_, binding_id, ..) if binding_id == id);
!result
});
result
}
/// Returns true if all the bindings in the `Pat` are in `ids` and vice versa
fn bindings_eq(pat: &Pat<'_>, mut ids: HirIdSet) -> bool {
let mut result = true;
pat.each_binding_or_first(&mut |_, id, _, _| result &= ids.remove(&id));
result && ids.is_empty()
}