rust-clippy/clippy_lints/src/operators/arithmetic_side_effects.rs

198 lines
7.1 KiB
Rust

use super::ARITHMETIC_SIDE_EFFECTS;
use clippy_utils::{consts::constant_simple, diagnostics::span_lint};
use rustc_ast as ast;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::ty::Ty;
use rustc_session::impl_lint_pass;
use rustc_span::source_map::{Span, Spanned};
const HARD_CODED_ALLOWED: &[&str] = &[
"&str",
"f32",
"f64",
"std::num::Saturating",
"std::num::Wrapping",
"std::string::String",
];
#[derive(Debug)]
pub struct ArithmeticSideEffects {
allowed: FxHashSet<String>,
// Used to check whether expressions are constants, such as in enum discriminants and consts
const_span: Option<Span>,
expr_span: Option<Span>,
}
impl_lint_pass!(ArithmeticSideEffects => [ARITHMETIC_SIDE_EFFECTS]);
impl ArithmeticSideEffects {
#[must_use]
pub fn new(mut allowed: FxHashSet<String>) -> Self {
allowed.extend(HARD_CODED_ALLOWED.iter().copied().map(String::from));
Self {
allowed,
const_span: None,
expr_span: None,
}
}
/// Assuming that `expr` is a literal integer, checks operators (+=, -=, *, /) in a
/// non-constant environment that won't overflow.
fn has_valid_op(op: &Spanned<hir::BinOpKind>, expr: &hir::Expr<'_>) -> bool {
if let hir::ExprKind::Lit(ref lit) = expr.kind &&
let ast::LitKind::Int(value, _) = lit.node
{
match (&op.node, value) {
(hir::BinOpKind::Div | hir::BinOpKind::Rem, 0) => false,
(hir::BinOpKind::Add | hir::BinOpKind::Sub, 0)
| (hir::BinOpKind::Div | hir::BinOpKind::Rem, _)
| (hir::BinOpKind::Mul, 0 | 1) => true,
_ => false,
}
} else {
false
}
}
/// Checks if the given `expr` has any of the inner `allowed` elements.
fn is_allowed_ty(&self, ty: Ty<'_>) -> bool {
self.allowed
.contains(ty.to_string().split('<').next().unwrap_or_default())
}
// For example, 8i32 or &i64::MAX.
fn is_integral(ty: Ty<'_>) -> bool {
ty.peel_refs().is_integral()
}
// Common entry-point to avoid code duplication.
fn issue_lint(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
let msg = "arithmetic operation that can potentially result in unexpected side-effects";
span_lint(cx, ARITHMETIC_SIDE_EFFECTS, expr.span, msg);
self.expr_span = Some(expr.span);
}
/// If `expr` does not match any variant of `LiteralIntegerTy`, returns `None`.
fn literal_integer<'expr, 'tcx>(expr: &'expr hir::Expr<'tcx>) -> Option<LiteralIntegerTy<'expr, 'tcx>> {
if matches!(expr.kind, hir::ExprKind::Lit(_)) {
return Some(LiteralIntegerTy::Value(expr));
}
if let hir::ExprKind::AddrOf(.., inn) = expr.kind && let hir::ExprKind::Lit(_) = inn.kind {
return Some(LiteralIntegerTy::Ref(inn));
}
None
}
/// Manages when the lint should be triggered. Operations in constant environments, hard coded
/// types, custom allowed types and non-constant operations that won't overflow are ignored.
fn manage_bin_ops<'tcx>(
&mut self,
cx: &LateContext<'tcx>,
expr: &hir::Expr<'tcx>,
op: &Spanned<hir::BinOpKind>,
lhs: &hir::Expr<'tcx>,
rhs: &hir::Expr<'tcx>,
) {
if constant_simple(cx, cx.typeck_results(), expr).is_some() {
return;
}
if !matches!(
op.node,
hir::BinOpKind::Add
| hir::BinOpKind::Sub
| hir::BinOpKind::Mul
| hir::BinOpKind::Div
| hir::BinOpKind::Rem
| hir::BinOpKind::Shl
| hir::BinOpKind::Shr
) {
return;
};
let lhs_ty = cx.typeck_results().expr_ty(lhs);
let rhs_ty = cx.typeck_results().expr_ty(rhs);
let lhs_and_rhs_have_the_same_ty = lhs_ty == rhs_ty;
if lhs_and_rhs_have_the_same_ty && self.is_allowed_ty(lhs_ty) && self.is_allowed_ty(rhs_ty) {
return;
}
let has_valid_op = if Self::is_integral(lhs_ty) && Self::is_integral(rhs_ty) {
match (Self::literal_integer(lhs), Self::literal_integer(rhs)) {
(None, Some(lit_int_ty)) | (Some(lit_int_ty), None) => Self::has_valid_op(op, lit_int_ty.into()),
(Some(LiteralIntegerTy::Value(_)), Some(LiteralIntegerTy::Value(_))) => true,
(None, None) | (Some(_), Some(_)) => false,
}
} else {
false
};
if !has_valid_op {
self.issue_lint(cx, expr);
}
}
}
impl<'tcx> LateLintPass<'tcx> for ArithmeticSideEffects {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'tcx>) {
if self.expr_span.is_some() || self.const_span.map_or(false, |sp| sp.contains(expr.span)) {
return;
}
match &expr.kind {
hir::ExprKind::Binary(op, lhs, rhs) | hir::ExprKind::AssignOp(op, lhs, rhs) => {
self.manage_bin_ops(cx, expr, op, lhs, rhs);
},
hir::ExprKind::Unary(hir::UnOp::Neg, _) => {
if constant_simple(cx, cx.typeck_results(), expr).is_none() {
self.issue_lint(cx, expr);
}
},
_ => {},
}
}
fn check_body(&mut self, cx: &LateContext<'_>, body: &hir::Body<'_>) {
let body_owner = cx.tcx.hir().body_owner(body.id());
let body_owner_def_id = cx.tcx.hir().local_def_id(body_owner);
let body_owner_kind = cx.tcx.hir().body_owner_kind(body_owner_def_id);
if let hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_) = body_owner_kind {
let body_span = cx.tcx.hir().span_with_body(body_owner);
if let Some(span) = self.const_span && span.contains(body_span) {
return;
}
self.const_span = Some(body_span);
}
}
fn check_body_post(&mut self, cx: &LateContext<'_>, body: &hir::Body<'_>) {
let body_owner = cx.tcx.hir().body_owner(body.id());
let body_span = cx.tcx.hir().span(body_owner);
if let Some(span) = self.const_span && span.contains(body_span) {
return;
}
self.const_span = None;
}
fn check_expr_post(&mut self, _: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) {
if Some(expr.span) == self.expr_span {
self.expr_span = None;
}
}
}
/// Tells if an expression is a integer declared by value or by reference.
///
/// If `LiteralIntegerTy::Ref`, then the contained value will be `hir::ExprKind::Lit` rather
/// than `hirExprKind::Addr`.
enum LiteralIntegerTy<'expr, 'tcx> {
/// For example, `&199`
Ref(&'expr hir::Expr<'tcx>),
/// For example, `1` or `i32::MAX`
Value(&'expr hir::Expr<'tcx>),
}
impl<'expr, 'tcx> From<LiteralIntegerTy<'expr, 'tcx>> for &'expr hir::Expr<'tcx> {
fn from(from: LiteralIntegerTy<'expr, 'tcx>) -> Self {
match from {
LiteralIntegerTy::Ref(elem) | LiteralIntegerTy::Value(elem) => elem,
}
}
}