mirror of
https://github.com/rust-lang/rust-clippy
synced 2024-12-18 00:53:31 +00:00
431 lines
12 KiB
Rust
431 lines
12 KiB
Rust
|
||
#![feature(const_fn)]
|
||
|
||
#![warn(clippy, clippy_pedantic, option_unwrap_used)]
|
||
#![allow(blacklisted_name, unused, print_stdout, non_ascii_literal, new_without_default,
|
||
new_without_default_derive, missing_docs_in_private_items, needless_pass_by_value)]
|
||
|
||
use std::collections::BTreeMap;
|
||
use std::collections::HashMap;
|
||
use std::collections::HashSet;
|
||
use std::collections::VecDeque;
|
||
use std::ops::Mul;
|
||
use std::iter::FromIterator;
|
||
use std::rc::{self, Rc};
|
||
use std::sync::{self, Arc};
|
||
|
||
pub struct T;
|
||
|
||
impl T {
|
||
pub fn add(self, other: T) -> T { self }
|
||
|
||
pub(crate) fn drop(&mut self) { } // no error, not public interfact
|
||
fn neg(self) -> Self { self } // no error, private function
|
||
fn eq(&self, other: T) -> bool { true } // no error, private function
|
||
|
||
fn sub(&self, other: T) -> &T { self } // no error, self is a ref
|
||
fn div(self) -> T { self } // no error, different #arguments
|
||
fn rem(self, other: T) { } // no error, wrong return type
|
||
|
||
fn into_u32(self) -> u32 { 0 } // fine
|
||
fn into_u16(&self) -> u16 { 0 }
|
||
|
||
fn to_something(self) -> u32 { 0 }
|
||
|
||
fn new(self) {}
|
||
}
|
||
|
||
struct Lt<'a> {
|
||
foo: &'a u32,
|
||
}
|
||
|
||
impl<'a> Lt<'a> {
|
||
// The lifetime is different, but that’s irrelevant, see #734
|
||
#[allow(needless_lifetimes)]
|
||
pub fn new<'b>(s: &'b str) -> Lt<'b> { unimplemented!() }
|
||
}
|
||
|
||
struct Lt2<'a> {
|
||
foo: &'a u32,
|
||
}
|
||
|
||
impl<'a> Lt2<'a> {
|
||
// The lifetime is different, but that’s irrelevant, see #734
|
||
pub fn new(s: &str) -> Lt2 { unimplemented!() }
|
||
}
|
||
|
||
struct Lt3<'a> {
|
||
foo: &'a u32,
|
||
}
|
||
|
||
impl<'a> Lt3<'a> {
|
||
// The lifetime is different, but that’s irrelevant, see #734
|
||
pub fn new() -> Lt3<'static> { unimplemented!() }
|
||
}
|
||
|
||
#[derive(Clone,Copy)]
|
||
struct U;
|
||
|
||
impl U {
|
||
fn new() -> Self { U }
|
||
fn to_something(self) -> u32 { 0 } // ok because U is Copy
|
||
}
|
||
|
||
struct V<T> {
|
||
_dummy: T
|
||
}
|
||
|
||
impl<T> V<T> {
|
||
fn new() -> Option<V<T>> { None }
|
||
}
|
||
|
||
impl Mul<T> for T {
|
||
type Output = T;
|
||
fn mul(self, other: T) -> T { self } // no error, obviously
|
||
}
|
||
|
||
/// Utility macro to test linting behavior in `option_methods()`
|
||
/// The lints included in `option_methods()` should not lint if the call to map is partially
|
||
/// within a macro
|
||
macro_rules! opt_map {
|
||
($opt:expr, $map:expr) => {($opt).map($map)};
|
||
}
|
||
|
||
/// Checks implementation of the following lints:
|
||
/// * `OPTION_MAP_UNWRAP_OR`
|
||
/// * `OPTION_MAP_UNWRAP_OR_ELSE`
|
||
/// * `OPTION_MAP_OR_NONE`
|
||
fn option_methods() {
|
||
let opt = Some(1);
|
||
|
||
// Check OPTION_MAP_UNWRAP_OR
|
||
// single line case
|
||
let _ = opt.map(|x| x + 1)
|
||
|
||
.unwrap_or(0); // should lint even though this call is on a separate line
|
||
// multi line cases
|
||
let _ = opt.map(|x| {
|
||
x + 1
|
||
}
|
||
).unwrap_or(0);
|
||
let _ = opt.map(|x| x + 1)
|
||
.unwrap_or({
|
||
0
|
||
});
|
||
// single line `map(f).unwrap_or(None)` case
|
||
let _ = opt.map(|x| Some(x + 1)).unwrap_or(None);
|
||
// multiline `map(f).unwrap_or(None)` cases
|
||
let _ = opt.map(|x| {
|
||
Some(x + 1)
|
||
}
|
||
).unwrap_or(None);
|
||
let _ = opt
|
||
.map(|x| Some(x + 1))
|
||
.unwrap_or(None);
|
||
// macro case
|
||
let _ = opt_map!(opt, |x| x + 1).unwrap_or(0); // should not lint
|
||
|
||
// Check OPTION_MAP_UNWRAP_OR_ELSE
|
||
// single line case
|
||
let _ = opt.map(|x| x + 1)
|
||
|
||
.unwrap_or_else(|| 0); // should lint even though this call is on a separate line
|
||
// multi line cases
|
||
let _ = opt.map(|x| {
|
||
x + 1
|
||
}
|
||
).unwrap_or_else(|| 0);
|
||
let _ = opt.map(|x| x + 1)
|
||
.unwrap_or_else(||
|
||
0
|
||
);
|
||
// macro case
|
||
let _ = opt_map!(opt, |x| x + 1).unwrap_or_else(|| 0); // should not lint
|
||
|
||
// Check OPTION_MAP_OR_NONE
|
||
// single line case
|
||
let _ = opt.map_or(None, |x| Some(x + 1));
|
||
// multi line case
|
||
let _ = opt.map_or(None, |x| {
|
||
Some(x + 1)
|
||
}
|
||
);
|
||
}
|
||
|
||
/// Checks implementation of the following lints:
|
||
/// * `RESULT_MAP_UNWRAP_OR_ELSE`
|
||
fn result_methods() {
|
||
let res: Result<i32, ()> = Ok(1);
|
||
|
||
// Check RESULT_MAP_UNWRAP_OR_ELSE
|
||
// single line case
|
||
let _ = res.map(|x| x + 1)
|
||
|
||
.unwrap_or_else(|e| 0); // should lint even though this call is on a separate line
|
||
// multi line cases
|
||
let _ = res.map(|x| {
|
||
x + 1
|
||
}
|
||
).unwrap_or_else(|e| 0);
|
||
let _ = res.map(|x| x + 1)
|
||
.unwrap_or_else(|e|
|
||
0
|
||
);
|
||
// macro case
|
||
let _ = opt_map!(res, |x| x + 1).unwrap_or_else(|e| 0); // should not lint
|
||
}
|
||
|
||
/// Struct to generate false positives for things with .iter()
|
||
#[derive(Copy, Clone)]
|
||
struct HasIter;
|
||
|
||
impl HasIter {
|
||
fn iter(self) -> IteratorFalsePositives {
|
||
IteratorFalsePositives { foo: 0 }
|
||
}
|
||
|
||
fn iter_mut(self) -> IteratorFalsePositives {
|
||
IteratorFalsePositives { foo: 0 }
|
||
}
|
||
}
|
||
|
||
/// Struct to generate false positive for Iterator-based lints
|
||
#[derive(Copy, Clone)]
|
||
struct IteratorFalsePositives {
|
||
foo: u32,
|
||
}
|
||
|
||
impl IteratorFalsePositives {
|
||
fn filter(self) -> IteratorFalsePositives {
|
||
self
|
||
}
|
||
|
||
fn next(self) -> IteratorFalsePositives {
|
||
self
|
||
}
|
||
|
||
fn find(self) -> Option<u32> {
|
||
Some(self.foo)
|
||
}
|
||
|
||
fn position(self) -> Option<u32> {
|
||
Some(self.foo)
|
||
}
|
||
|
||
fn rposition(self) -> Option<u32> {
|
||
Some(self.foo)
|
||
}
|
||
|
||
fn nth(self, n: usize) -> Option<u32> {
|
||
Some(self.foo)
|
||
}
|
||
|
||
fn skip(self, _: usize) -> IteratorFalsePositives {
|
||
self
|
||
}
|
||
}
|
||
|
||
/// Checks implementation of `FILTER_NEXT` lint
|
||
fn filter_next() {
|
||
let v = vec![3, 2, 1, 0, -1, -2, -3];
|
||
|
||
// check single-line case
|
||
let _ = v.iter().filter(|&x| *x < 0).next();
|
||
|
||
// check multi-line case
|
||
let _ = v.iter().filter(|&x| {
|
||
*x < 0
|
||
}
|
||
).next();
|
||
|
||
// check that we don't lint if the caller is not an Iterator
|
||
let foo = IteratorFalsePositives { foo: 0 };
|
||
let _ = foo.filter().next();
|
||
}
|
||
|
||
/// Checks implementation of `SEARCH_IS_SOME` lint
|
||
fn search_is_some() {
|
||
let v = vec![3, 2, 1, 0, -1, -2, -3];
|
||
|
||
// check `find().is_some()`, single-line
|
||
let _ = v.iter().find(|&x| *x < 0).is_some();
|
||
|
||
// check `find().is_some()`, multi-line
|
||
let _ = v.iter().find(|&x| {
|
||
*x < 0
|
||
}
|
||
).is_some();
|
||
|
||
// check `position().is_some()`, single-line
|
||
let _ = v.iter().position(|&x| x < 0).is_some();
|
||
|
||
// check `position().is_some()`, multi-line
|
||
let _ = v.iter().position(|&x| {
|
||
x < 0
|
||
}
|
||
).is_some();
|
||
|
||
// check `rposition().is_some()`, single-line
|
||
let _ = v.iter().rposition(|&x| x < 0).is_some();
|
||
|
||
// check `rposition().is_some()`, multi-line
|
||
let _ = v.iter().rposition(|&x| {
|
||
x < 0
|
||
}
|
||
).is_some();
|
||
|
||
// check that we don't lint if the caller is not an Iterator
|
||
let foo = IteratorFalsePositives { foo: 0 };
|
||
let _ = foo.find().is_some();
|
||
let _ = foo.position().is_some();
|
||
let _ = foo.rposition().is_some();
|
||
}
|
||
|
||
/// Checks implementation of the `OR_FUN_CALL` lint
|
||
fn or_fun_call() {
|
||
struct Foo;
|
||
|
||
impl Foo {
|
||
fn new() -> Foo { Foo }
|
||
}
|
||
|
||
enum Enum {
|
||
A(i32),
|
||
}
|
||
|
||
const fn make_const(i: i32) -> i32 { i }
|
||
|
||
fn make<T>() -> T { unimplemented!(); }
|
||
|
||
let with_enum = Some(Enum::A(1));
|
||
with_enum.unwrap_or(Enum::A(5));
|
||
|
||
let with_const_fn = Some(1);
|
||
with_const_fn.unwrap_or(make_const(5));
|
||
|
||
let with_constructor = Some(vec![1]);
|
||
with_constructor.unwrap_or(make());
|
||
|
||
let with_new = Some(vec![1]);
|
||
with_new.unwrap_or(Vec::new());
|
||
|
||
let with_const_args = Some(vec![1]);
|
||
with_const_args.unwrap_or(Vec::with_capacity(12));
|
||
|
||
let with_err : Result<_, ()> = Ok(vec![1]);
|
||
with_err.unwrap_or(make());
|
||
|
||
let with_err_args : Result<_, ()> = Ok(vec![1]);
|
||
with_err_args.unwrap_or(Vec::with_capacity(12));
|
||
|
||
let with_default_trait = Some(1);
|
||
with_default_trait.unwrap_or(Default::default());
|
||
|
||
let with_default_type = Some(1);
|
||
with_default_type.unwrap_or(u64::default());
|
||
|
||
let with_vec = Some(vec![1]);
|
||
with_vec.unwrap_or(vec![]);
|
||
|
||
// FIXME #944: ~|SUGGESTION with_vec.unwrap_or_else(|| vec![]);
|
||
|
||
let without_default = Some(Foo);
|
||
without_default.unwrap_or(Foo::new());
|
||
|
||
let mut map = HashMap::<u64, String>::new();
|
||
map.entry(42).or_insert(String::new());
|
||
|
||
let mut btree = BTreeMap::<u64, String>::new();
|
||
btree.entry(42).or_insert(String::new());
|
||
|
||
let stringy = Some(String::from(""));
|
||
let _ = stringy.unwrap_or("".to_owned());
|
||
}
|
||
|
||
/// Checks implementation of `ITER_NTH` lint
|
||
fn iter_nth() {
|
||
let mut some_vec = vec![0, 1, 2, 3];
|
||
let mut boxed_slice: Box<[u8]> = Box::new([0, 1, 2, 3]);
|
||
let mut some_vec_deque: VecDeque<_> = some_vec.iter().cloned().collect();
|
||
|
||
{
|
||
// Make sure we lint `.iter()` for relevant types
|
||
let bad_vec = some_vec.iter().nth(3);
|
||
let bad_slice = &some_vec[..].iter().nth(3);
|
||
let bad_boxed_slice = boxed_slice.iter().nth(3);
|
||
let bad_vec_deque = some_vec_deque.iter().nth(3);
|
||
}
|
||
|
||
{
|
||
// Make sure we lint `.iter_mut()` for relevant types
|
||
let bad_vec = some_vec.iter_mut().nth(3);
|
||
}
|
||
{
|
||
let bad_slice = &some_vec[..].iter_mut().nth(3);
|
||
}
|
||
{
|
||
let bad_vec_deque = some_vec_deque.iter_mut().nth(3);
|
||
}
|
||
|
||
// Make sure we don't lint for non-relevant types
|
||
let false_positive = HasIter;
|
||
let ok = false_positive.iter().nth(3);
|
||
let ok_mut = false_positive.iter_mut().nth(3);
|
||
}
|
||
|
||
/// Checks implementation of `ITER_SKIP_NEXT` lint
|
||
fn iter_skip_next() {
|
||
let mut some_vec = vec![0, 1, 2, 3];
|
||
let _ = some_vec.iter().skip(42).next();
|
||
let _ = some_vec.iter().cycle().skip(42).next();
|
||
let _ = (1..10).skip(10).next();
|
||
let _ = &some_vec[..].iter().skip(3).next();
|
||
let foo = IteratorFalsePositives { foo : 0 };
|
||
let _ = foo.skip(42).next();
|
||
let _ = foo.filter().skip(42).next();
|
||
}
|
||
|
||
/// Calls which should trigger the `UNNECESSARY_FOLD` lint
|
||
fn unnecessary_fold() {
|
||
// Can be replaced by .any
|
||
let _ = (0..3).fold(false, |acc, x| acc || x > 2);
|
||
// Can be replaced by .all
|
||
let _ = (0..3).fold(true, |acc, x| acc && x > 2);
|
||
// Can be replaced by .sum
|
||
let _ = (0..3).fold(0, |acc, x| acc + x);
|
||
// Can be replaced by .product
|
||
let _ = (0..3).fold(1, |acc, x| acc * x);
|
||
}
|
||
|
||
/// Should trigger the `UNNECESSARY_FOLD` lint, with an error span including exactly `.fold(...)`
|
||
fn unnecessary_fold_span_for_multi_element_chain() {
|
||
let _ = (0..3).map(|x| 2 * x).fold(false, |acc, x| acc || x > 2);
|
||
}
|
||
|
||
/// Calls which should not trigger the `UNNECESSARY_FOLD` lint
|
||
fn unnecessary_fold_should_ignore() {
|
||
let _ = (0..3).fold(true, |acc, x| acc || x > 2);
|
||
let _ = (0..3).fold(false, |acc, x| acc && x > 2);
|
||
let _ = (0..3).fold(1, |acc, x| acc + x);
|
||
let _ = (0..3).fold(0, |acc, x| acc * x);
|
||
let _ = (0..3).fold(0, |acc, x| 1 + acc + x);
|
||
|
||
// We only match against an accumulator on the left
|
||
// hand side. We could lint for .sum and .product when
|
||
// it's on the right, but don't for now (and this wouldn't
|
||
// be valid if we extended the lint to cover arbitrary numeric
|
||
// types).
|
||
let _ = (0..3).fold(false, |acc, x| x > 2 || acc);
|
||
let _ = (0..3).fold(true, |acc, x| x > 2 && acc);
|
||
let _ = (0..3).fold(0, |acc, x| x + acc);
|
||
let _ = (0..3).fold(1, |acc, x| x * acc);
|
||
|
||
let _ = [(0..2), (0..3)].iter().fold(0, |a, b| a + b.len());
|
||
let _ = [(0..2), (0..3)].iter().fold(1, |a, b| a * b.len());
|
||
}
|
||
|
||
#[allow(similar_names)]
|
||
fn main() {
|
||
let opt = Some(0);
|
||
let _ = opt.unwrap();
|
||
}
|