mirror of
https://github.com/rust-lang/rust-clippy
synced 2024-12-22 11:03:16 +00:00
1214 lines
37 KiB
Rust
1214 lines
37 KiB
Rust
pub mod attrs;
|
||
pub mod author;
|
||
pub mod camel_case;
|
||
pub mod comparisons;
|
||
pub mod conf;
|
||
pub mod constants;
|
||
mod diagnostics;
|
||
pub mod higher;
|
||
mod hir_utils;
|
||
pub mod inspector;
|
||
pub mod internal_lints;
|
||
pub mod paths;
|
||
pub mod ptr;
|
||
pub mod sugg;
|
||
pub mod usage;
|
||
pub use self::attrs::*;
|
||
pub use self::diagnostics::*;
|
||
pub use self::hir_utils::{SpanlessEq, SpanlessHash};
|
||
|
||
use std::borrow::Cow;
|
||
use std::mem;
|
||
|
||
use if_chain::if_chain;
|
||
use matches::matches;
|
||
use rustc::hir;
|
||
use rustc::hir::def::Def;
|
||
use rustc::hir::def_id::CrateNum;
|
||
use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
|
||
use rustc::hir::intravisit::{NestedVisitorMap, Visitor};
|
||
use rustc::hir::map::{DefPathData, DisambiguatedDefPathData};
|
||
use rustc::hir::Node;
|
||
use rustc::hir::*;
|
||
use rustc::lint::{LateContext, Level, Lint, LintContext};
|
||
use rustc::traits;
|
||
use rustc::ty::{
|
||
self,
|
||
layout::{self, IntegerExt},
|
||
subst::Kind,
|
||
Binder, Ty, TyCtxt,
|
||
};
|
||
use rustc_data_structures::sync::Lrc;
|
||
use rustc_errors::Applicability;
|
||
use syntax::ast::{self, LitKind};
|
||
use syntax::attr;
|
||
use syntax::source_map::{Span, DUMMY_SP};
|
||
use syntax::symbol::{keywords, LocalInternedString, Symbol};
|
||
|
||
use crate::reexport::*;
|
||
|
||
/// Returns `true` if the two spans come from differing expansions (i.e., one is
|
||
/// from a macro and one isn't).
|
||
pub fn differing_macro_contexts(lhs: Span, rhs: Span) -> bool {
|
||
rhs.ctxt() != lhs.ctxt()
|
||
}
|
||
|
||
/// Returns `true` if the given `NodeId` is inside a constant context
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust,ignore
|
||
/// if in_constant(cx, expr.id) {
|
||
/// // Do something
|
||
/// }
|
||
/// ```
|
||
pub fn in_constant(cx: &LateContext<'_, '_>, id: HirId) -> bool {
|
||
let parent_id = cx.tcx.hir().get_parent_item(id);
|
||
match cx.tcx.hir().get_by_hir_id(parent_id) {
|
||
Node::Item(&Item {
|
||
node: ItemKind::Const(..),
|
||
..
|
||
})
|
||
| Node::TraitItem(&TraitItem {
|
||
node: TraitItemKind::Const(..),
|
||
..
|
||
})
|
||
| Node::ImplItem(&ImplItem {
|
||
node: ImplItemKind::Const(..),
|
||
..
|
||
})
|
||
| Node::AnonConst(_)
|
||
| Node::Item(&Item {
|
||
node: ItemKind::Static(..),
|
||
..
|
||
}) => true,
|
||
Node::Item(&Item {
|
||
node: ItemKind::Fn(_, header, ..),
|
||
..
|
||
}) => header.constness == Constness::Const,
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
/// Returns `true` if this `expn_info` was expanded by any macro.
|
||
pub fn in_macro(span: Span) -> bool {
|
||
span.ctxt().outer().expn_info().is_some()
|
||
}
|
||
|
||
/// Used to store the absolute path to a type.
|
||
///
|
||
/// See `match_def_path` for usage.
|
||
pub struct AbsolutePathPrinter<'a, 'tcx> {
|
||
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
|
||
}
|
||
|
||
use rustc::ty::print::Printer;
|
||
|
||
#[allow(clippy::diverging_sub_expression)]
|
||
impl<'tcx> Printer<'tcx, 'tcx> for AbsolutePathPrinter<'_, 'tcx> {
|
||
type Error = !;
|
||
|
||
type Path = Vec<LocalInternedString>;
|
||
type Region = ();
|
||
type Type = ();
|
||
type DynExistential = ();
|
||
|
||
fn tcx<'a>(&'a self) -> TyCtxt<'a, 'tcx, 'tcx> {
|
||
self.tcx
|
||
}
|
||
|
||
fn print_region(self, _region: ty::Region<'_>) -> Result<Self::Region, Self::Error> {
|
||
Ok(())
|
||
}
|
||
|
||
fn print_type(self, _ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
|
||
Ok(())
|
||
}
|
||
|
||
fn print_dyn_existential(
|
||
self,
|
||
_predicates: &'tcx ty::List<ty::ExistentialPredicate<'tcx>>,
|
||
) -> Result<Self::DynExistential, Self::Error> {
|
||
Ok(())
|
||
}
|
||
|
||
fn path_crate(self, cnum: CrateNum) -> Result<Self::Path, Self::Error> {
|
||
Ok(vec![self.tcx.original_crate_name(cnum).as_str()])
|
||
}
|
||
|
||
fn path_qualified(
|
||
self,
|
||
self_ty: Ty<'tcx>,
|
||
trait_ref: Option<ty::TraitRef<'tcx>>,
|
||
) -> Result<Self::Path, Self::Error> {
|
||
if trait_ref.is_none() {
|
||
if let ty::Adt(def, substs) = self_ty.sty {
|
||
return self.print_def_path(def.did, substs);
|
||
}
|
||
}
|
||
|
||
// This shouldn't ever be needed, but just in case:
|
||
Ok(vec![match trait_ref {
|
||
Some(trait_ref) => Symbol::intern(&format!("{:?}", trait_ref)).as_str(),
|
||
None => Symbol::intern(&format!("<{}>", self_ty)).as_str(),
|
||
}])
|
||
}
|
||
|
||
fn path_append_impl(
|
||
self,
|
||
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
|
||
_disambiguated_data: &DisambiguatedDefPathData,
|
||
self_ty: Ty<'tcx>,
|
||
trait_ref: Option<ty::TraitRef<'tcx>>,
|
||
) -> Result<Self::Path, Self::Error> {
|
||
let mut path = print_prefix(self)?;
|
||
|
||
// This shouldn't ever be needed, but just in case:
|
||
path.push(match trait_ref {
|
||
Some(trait_ref) => Symbol::intern(&format!("<impl {} for {}>", trait_ref, self_ty)).as_str(),
|
||
None => Symbol::intern(&format!("<impl {}>", self_ty)).as_str(),
|
||
});
|
||
|
||
Ok(path)
|
||
}
|
||
|
||
fn path_append(
|
||
self,
|
||
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
|
||
disambiguated_data: &DisambiguatedDefPathData,
|
||
) -> Result<Self::Path, Self::Error> {
|
||
let mut path = print_prefix(self)?;
|
||
|
||
// Skip `::{{constructor}}` on tuple/unit structs.
|
||
if let DefPathData::Ctor = disambiguated_data.data {
|
||
return Ok(path);
|
||
}
|
||
|
||
path.push(disambiguated_data.data.as_interned_str().as_str());
|
||
Ok(path)
|
||
}
|
||
|
||
fn path_generic_args(
|
||
self,
|
||
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
|
||
_args: &[Kind<'tcx>],
|
||
) -> Result<Self::Path, Self::Error> {
|
||
print_prefix(self)
|
||
}
|
||
}
|
||
|
||
/// Checks if a `DefId`'s path matches the given absolute type path usage.
|
||
///
|
||
/// # Examples
|
||
/// ```rust,ignore
|
||
/// match_def_path(cx.tcx, id, &["core", "option", "Option"])
|
||
/// ```
|
||
///
|
||
/// See also the `paths` module.
|
||
pub fn match_def_path<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, path: &[&str]) -> bool {
|
||
let names = get_def_path(tcx, def_id);
|
||
|
||
names.len() == path.len() && names.into_iter().zip(path.iter()).all(|(a, &b)| *a == *b)
|
||
}
|
||
|
||
/// Gets the absolute path of `def_id` as a vector of `&str`.
|
||
///
|
||
/// # Examples
|
||
/// ```rust,ignore
|
||
/// let def_path = get_def_path(tcx, def_id);
|
||
/// if let &["core", "option", "Option"] = &def_path[..] {
|
||
/// // The given `def_id` is that of an `Option` type
|
||
/// };
|
||
/// ```
|
||
pub fn get_def_path<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Vec<&'static str> {
|
||
AbsolutePathPrinter { tcx }
|
||
.print_def_path(def_id, &[])
|
||
.unwrap()
|
||
.iter()
|
||
.map(LocalInternedString::get)
|
||
.collect()
|
||
}
|
||
|
||
/// Checks if type is struct, enum or union type with the given def path.
|
||
pub fn match_type(cx: &LateContext<'_, '_>, ty: Ty<'_>, path: &[&str]) -> bool {
|
||
match ty.sty {
|
||
ty::Adt(adt, _) => match_def_path(cx.tcx, adt.did, path),
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
/// Checks if the method call given in `expr` belongs to the given trait.
|
||
pub fn match_trait_method(cx: &LateContext<'_, '_>, expr: &Expr, path: &[&str]) -> bool {
|
||
let def_id = cx.tables.type_dependent_def_id(expr.hir_id).unwrap();
|
||
let trt_id = cx.tcx.trait_of_item(def_id);
|
||
if let Some(trt_id) = trt_id {
|
||
match_def_path(cx.tcx, trt_id, path)
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// Checks if an expression references a variable of the given name.
|
||
pub fn match_var(expr: &Expr, var: Name) -> bool {
|
||
if let ExprKind::Path(QPath::Resolved(None, ref path)) = expr.node {
|
||
if path.segments.len() == 1 && path.segments[0].ident.name == var {
|
||
return true;
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
pub fn last_path_segment(path: &QPath) -> &PathSegment {
|
||
match *path {
|
||
QPath::Resolved(_, ref path) => path.segments.last().expect("A path must have at least one segment"),
|
||
QPath::TypeRelative(_, ref seg) => seg,
|
||
}
|
||
}
|
||
|
||
pub fn single_segment_path(path: &QPath) -> Option<&PathSegment> {
|
||
match *path {
|
||
QPath::Resolved(_, ref path) if path.segments.len() == 1 => Some(&path.segments[0]),
|
||
QPath::Resolved(..) => None,
|
||
QPath::TypeRelative(_, ref seg) => Some(seg),
|
||
}
|
||
}
|
||
|
||
/// Matches a `QPath` against a slice of segment string literals.
|
||
///
|
||
/// There is also `match_path` if you are dealing with a `rustc::hir::Path` instead of a
|
||
/// `rustc::hir::QPath`.
|
||
///
|
||
/// # Examples
|
||
/// ```rust,ignore
|
||
/// match_qpath(path, &["std", "rt", "begin_unwind"])
|
||
/// ```
|
||
pub fn match_qpath(path: &QPath, segments: &[&str]) -> bool {
|
||
match *path {
|
||
QPath::Resolved(_, ref path) => match_path(path, segments),
|
||
QPath::TypeRelative(ref ty, ref segment) => match ty.node {
|
||
TyKind::Path(ref inner_path) => {
|
||
!segments.is_empty()
|
||
&& match_qpath(inner_path, &segments[..(segments.len() - 1)])
|
||
&& segment.ident.name == segments[segments.len() - 1]
|
||
},
|
||
_ => false,
|
||
},
|
||
}
|
||
}
|
||
|
||
/// Matches a `Path` against a slice of segment string literals.
|
||
///
|
||
/// There is also `match_qpath` if you are dealing with a `rustc::hir::QPath` instead of a
|
||
/// `rustc::hir::Path`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```rust,ignore
|
||
/// if match_path(&trait_ref.path, &paths::HASH) {
|
||
/// // This is the `std::hash::Hash` trait.
|
||
/// }
|
||
///
|
||
/// if match_path(ty_path, &["rustc", "lint", "Lint"]) {
|
||
/// // This is a `rustc::lint::Lint`.
|
||
/// }
|
||
/// ```
|
||
pub fn match_path(path: &Path, segments: &[&str]) -> bool {
|
||
path.segments
|
||
.iter()
|
||
.rev()
|
||
.zip(segments.iter().rev())
|
||
.all(|(a, b)| a.ident.name == *b)
|
||
}
|
||
|
||
/// Matches a `Path` against a slice of segment string literals, e.g.
|
||
///
|
||
/// # Examples
|
||
/// ```rust,ignore
|
||
/// match_qpath(path, &["std", "rt", "begin_unwind"])
|
||
/// ```
|
||
pub fn match_path_ast(path: &ast::Path, segments: &[&str]) -> bool {
|
||
path.segments
|
||
.iter()
|
||
.rev()
|
||
.zip(segments.iter().rev())
|
||
.all(|(a, b)| a.ident.name == *b)
|
||
}
|
||
|
||
/// Gets the definition associated to a path.
|
||
pub fn path_to_def(cx: &LateContext<'_, '_>, path: &[&str]) -> Option<def::Def> {
|
||
let crates = cx.tcx.crates();
|
||
let krate = crates.iter().find(|&&krate| cx.tcx.crate_name(krate) == path[0]);
|
||
if let Some(krate) = krate {
|
||
let krate = DefId {
|
||
krate: *krate,
|
||
index: CRATE_DEF_INDEX,
|
||
};
|
||
let mut items = cx.tcx.item_children(krate);
|
||
let mut path_it = path.iter().skip(1).peekable();
|
||
|
||
loop {
|
||
let segment = match path_it.next() {
|
||
Some(segment) => segment,
|
||
None => return None,
|
||
};
|
||
|
||
for item in mem::replace(&mut items, Lrc::new(vec![])).iter() {
|
||
if item.ident.name == *segment {
|
||
if path_it.peek().is_none() {
|
||
return Some(item.def);
|
||
}
|
||
|
||
items = cx.tcx.item_children(item.def.def_id());
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Convenience function to get the `DefId` of a trait by path.
|
||
pub fn get_trait_def_id(cx: &LateContext<'_, '_>, path: &[&str]) -> Option<DefId> {
|
||
let def = match path_to_def(cx, path) {
|
||
Some(def) => def,
|
||
None => return None,
|
||
};
|
||
|
||
match def {
|
||
def::Def::Trait(trait_id) => Some(trait_id),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
/// Checks whether a type implements a trait.
|
||
/// See also `get_trait_def_id`.
|
||
pub fn implements_trait<'a, 'tcx>(
|
||
cx: &LateContext<'a, 'tcx>,
|
||
ty: Ty<'tcx>,
|
||
trait_id: DefId,
|
||
ty_params: &[Kind<'tcx>],
|
||
) -> bool {
|
||
let ty = cx.tcx.erase_regions(&ty);
|
||
let obligation = cx.tcx.predicate_for_trait_def(
|
||
cx.param_env,
|
||
traits::ObligationCause::dummy(),
|
||
trait_id,
|
||
0,
|
||
ty,
|
||
ty_params,
|
||
);
|
||
cx.tcx
|
||
.infer_ctxt()
|
||
.enter(|infcx| infcx.predicate_must_hold_modulo_regions(&obligation))
|
||
}
|
||
|
||
/// Gets the `hir::TraitRef` of the trait the given method is implemented for.
|
||
///
|
||
/// Use this if you want to find the `TraitRef` of the `Add` trait in this example:
|
||
///
|
||
/// ```rust
|
||
/// struct Point(isize, isize);
|
||
///
|
||
/// impl std::ops::Add for Point {
|
||
/// type Output = Self;
|
||
///
|
||
/// fn add(self, other: Self) -> Self {
|
||
/// Point(0, 0)
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
pub fn trait_ref_of_method(cx: &LateContext<'_, '_>, hir_id: HirId) -> Option<TraitRef> {
|
||
// Get the implemented trait for the current function
|
||
let parent_impl = cx.tcx.hir().get_parent_item(hir_id);
|
||
if_chain! {
|
||
if parent_impl != hir::CRATE_HIR_ID;
|
||
if let hir::Node::Item(item) = cx.tcx.hir().get_by_hir_id(parent_impl);
|
||
if let hir::ItemKind::Impl(_, _, _, _, trait_ref, _, _) = &item.node;
|
||
then { return trait_ref.clone(); }
|
||
}
|
||
None
|
||
}
|
||
|
||
/// Checks whether this type implements `Drop`.
|
||
pub fn has_drop<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
|
||
match ty.ty_adt_def() {
|
||
Some(def) => def.has_dtor(cx.tcx),
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
/// Resolves the definition of a node from its `HirId`.
|
||
pub fn resolve_node(cx: &LateContext<'_, '_>, qpath: &QPath, id: HirId) -> def::Def {
|
||
cx.tables.qpath_def(qpath, id)
|
||
}
|
||
|
||
/// Returns the method names and argument list of nested method call expressions that make up
|
||
/// `expr`.
|
||
pub fn method_calls<'a>(expr: &'a Expr, max_depth: usize) -> (Vec<Symbol>, Vec<&'a [Expr]>) {
|
||
let mut method_names = Vec::with_capacity(max_depth);
|
||
let mut arg_lists = Vec::with_capacity(max_depth);
|
||
|
||
let mut current = expr;
|
||
for _ in 0..max_depth {
|
||
if let ExprKind::MethodCall(path, _, args) = ¤t.node {
|
||
if args.iter().any(|e| in_macro(e.span)) {
|
||
break;
|
||
}
|
||
method_names.push(path.ident.name);
|
||
arg_lists.push(&**args);
|
||
current = &args[0];
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
|
||
(method_names, arg_lists)
|
||
}
|
||
|
||
/// Matches an `Expr` against a chain of methods, and return the matched `Expr`s.
|
||
///
|
||
/// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`,
|
||
/// `matched_method_chain(expr, &["bar", "baz"])` will return a `Vec`
|
||
/// containing the `Expr`s for
|
||
/// `.bar()` and `.baz()`
|
||
pub fn method_chain_args<'a>(expr: &'a Expr, methods: &[&str]) -> Option<Vec<&'a [Expr]>> {
|
||
let mut current = expr;
|
||
let mut matched = Vec::with_capacity(methods.len());
|
||
for method_name in methods.iter().rev() {
|
||
// method chains are stored last -> first
|
||
if let ExprKind::MethodCall(ref path, _, ref args) = current.node {
|
||
if path.ident.name == *method_name {
|
||
if args.iter().any(|e| in_macro(e.span)) {
|
||
return None;
|
||
}
|
||
matched.push(&**args); // build up `matched` backwards
|
||
current = &args[0] // go to parent expression
|
||
} else {
|
||
return None;
|
||
}
|
||
} else {
|
||
return None;
|
||
}
|
||
}
|
||
// Reverse `matched` so that it is in the same order as `methods`.
|
||
matched.reverse();
|
||
Some(matched)
|
||
}
|
||
|
||
/// Returns `true` if the provided `def_id` is an entrypoint to a program.
|
||
pub fn is_entrypoint_fn(cx: &LateContext<'_, '_>, def_id: DefId) -> bool {
|
||
if let Some((entry_fn_def_id, _)) = cx.tcx.entry_fn(LOCAL_CRATE) {
|
||
return def_id == entry_fn_def_id;
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Gets the name of the item the expression is in, if available.
|
||
pub fn get_item_name(cx: &LateContext<'_, '_>, expr: &Expr) -> Option<Name> {
|
||
let parent_id = cx.tcx.hir().get_parent_item(expr.hir_id);
|
||
match cx.tcx.hir().find_by_hir_id(parent_id) {
|
||
Some(Node::Item(&Item { ref ident, .. })) => Some(ident.name),
|
||
Some(Node::TraitItem(&TraitItem { ident, .. })) | Some(Node::ImplItem(&ImplItem { ident, .. })) => {
|
||
Some(ident.name)
|
||
},
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
/// Gets the name of a `Pat`, if any.
|
||
pub fn get_pat_name(pat: &Pat) -> Option<Name> {
|
||
match pat.node {
|
||
PatKind::Binding(.., ref spname, _) => Some(spname.name),
|
||
PatKind::Path(ref qpath) => single_segment_path(qpath).map(|ps| ps.ident.name),
|
||
PatKind::Box(ref p) | PatKind::Ref(ref p, _) => get_pat_name(&*p),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
struct ContainsName {
|
||
name: Name,
|
||
result: bool,
|
||
}
|
||
|
||
impl<'tcx> Visitor<'tcx> for ContainsName {
|
||
fn visit_name(&mut self, _: Span, name: Name) {
|
||
if self.name == name {
|
||
self.result = true;
|
||
}
|
||
}
|
||
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
|
||
NestedVisitorMap::None
|
||
}
|
||
}
|
||
|
||
/// Checks if an `Expr` contains a certain name.
|
||
pub fn contains_name(name: Name, expr: &Expr) -> bool {
|
||
let mut cn = ContainsName { name, result: false };
|
||
cn.visit_expr(expr);
|
||
cn.result
|
||
}
|
||
|
||
/// Converts a span to a code snippet if available, otherwise use default.
|
||
///
|
||
/// This is useful if you want to provide suggestions for your lint or more generally, if you want
|
||
/// to convert a given `Span` to a `str`.
|
||
///
|
||
/// # Example
|
||
/// ```rust,ignore
|
||
/// snippet(cx, expr.span, "..")
|
||
/// ```
|
||
pub fn snippet<'a, 'b, T: LintContext<'b>>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
|
||
snippet_opt(cx, span).map_or_else(|| Cow::Borrowed(default), From::from)
|
||
}
|
||
|
||
/// Same as `snippet`, but it adapts the applicability level by following rules:
|
||
///
|
||
/// - Applicability level `Unspecified` will never be changed.
|
||
/// - If the span is inside a macro, change the applicability level to `MaybeIncorrect`.
|
||
/// - If the default value is used and the applicability level is `MachineApplicable`, change it to
|
||
/// `HasPlaceholders`
|
||
pub fn snippet_with_applicability<'a, 'b, T: LintContext<'b>>(
|
||
cx: &T,
|
||
span: Span,
|
||
default: &'a str,
|
||
applicability: &mut Applicability,
|
||
) -> Cow<'a, str> {
|
||
if *applicability != Applicability::Unspecified && in_macro(span) {
|
||
*applicability = Applicability::MaybeIncorrect;
|
||
}
|
||
snippet_opt(cx, span).map_or_else(
|
||
|| {
|
||
if *applicability == Applicability::MachineApplicable {
|
||
*applicability = Applicability::HasPlaceholders;
|
||
}
|
||
Cow::Borrowed(default)
|
||
},
|
||
From::from,
|
||
)
|
||
}
|
||
|
||
/// Same as `snippet`, but should only be used when it's clear that the input span is
|
||
/// not a macro argument.
|
||
pub fn snippet_with_macro_callsite<'a, 'b, T: LintContext<'b>>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
|
||
snippet(cx, span.source_callsite(), default)
|
||
}
|
||
|
||
/// Converts a span to a code snippet. Returns `None` if not available.
|
||
pub fn snippet_opt<'a, T: LintContext<'a>>(cx: &T, span: Span) -> Option<String> {
|
||
cx.sess().source_map().span_to_snippet(span).ok()
|
||
}
|
||
|
||
/// Converts a span (from a block) to a code snippet if available, otherwise use
|
||
/// default.
|
||
/// This trims the code of indentation, except for the first line. Use it for
|
||
/// blocks or block-like
|
||
/// things which need to be printed as such.
|
||
///
|
||
/// # Example
|
||
/// ```rust,ignore
|
||
/// snippet_block(cx, expr.span, "..")
|
||
/// ```
|
||
pub fn snippet_block<'a, 'b, T: LintContext<'b>>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
|
||
let snip = snippet(cx, span, default);
|
||
trim_multiline(snip, true)
|
||
}
|
||
|
||
/// Same as `snippet_block`, but adapts the applicability level by the rules of
|
||
/// `snippet_with_applicabiliy`.
|
||
pub fn snippet_block_with_applicability<'a, 'b, T: LintContext<'b>>(
|
||
cx: &T,
|
||
span: Span,
|
||
default: &'a str,
|
||
applicability: &mut Applicability,
|
||
) -> Cow<'a, str> {
|
||
let snip = snippet_with_applicability(cx, span, default, applicability);
|
||
trim_multiline(snip, true)
|
||
}
|
||
|
||
/// Returns a new Span that covers the full last line of the given Span
|
||
pub fn last_line_of_span<'a, T: LintContext<'a>>(cx: &T, span: Span) -> Span {
|
||
let source_map_and_line = cx.sess().source_map().lookup_line(span.lo()).unwrap();
|
||
let line_no = source_map_and_line.line;
|
||
let line_start = &source_map_and_line.sf.lines[line_no];
|
||
Span::new(*line_start, span.hi(), span.ctxt())
|
||
}
|
||
|
||
/// Like `snippet_block`, but add braces if the expr is not an `ExprKind::Block`.
|
||
/// Also takes an `Option<String>` which can be put inside the braces.
|
||
pub fn expr_block<'a, 'b, T: LintContext<'b>>(
|
||
cx: &T,
|
||
expr: &Expr,
|
||
option: Option<String>,
|
||
default: &'a str,
|
||
) -> Cow<'a, str> {
|
||
let code = snippet_block(cx, expr.span, default);
|
||
let string = option.unwrap_or_default();
|
||
if in_macro(expr.span) {
|
||
Cow::Owned(format!("{{ {} }}", snippet_with_macro_callsite(cx, expr.span, default)))
|
||
} else if let ExprKind::Block(_, _) = expr.node {
|
||
Cow::Owned(format!("{}{}", code, string))
|
||
} else if string.is_empty() {
|
||
Cow::Owned(format!("{{ {} }}", code))
|
||
} else {
|
||
Cow::Owned(format!("{{\n{};\n{}\n}}", code, string))
|
||
}
|
||
}
|
||
|
||
/// Trim indentation from a multiline string with possibility of ignoring the
|
||
/// first line.
|
||
pub fn trim_multiline(s: Cow<'_, str>, ignore_first: bool) -> Cow<'_, str> {
|
||
let s_space = trim_multiline_inner(s, ignore_first, ' ');
|
||
let s_tab = trim_multiline_inner(s_space, ignore_first, '\t');
|
||
trim_multiline_inner(s_tab, ignore_first, ' ')
|
||
}
|
||
|
||
fn trim_multiline_inner(s: Cow<'_, str>, ignore_first: bool, ch: char) -> Cow<'_, str> {
|
||
let x = s
|
||
.lines()
|
||
.skip(ignore_first as usize)
|
||
.filter_map(|l| {
|
||
if l.is_empty() {
|
||
None
|
||
} else {
|
||
// ignore empty lines
|
||
Some(l.char_indices().find(|&(_, x)| x != ch).unwrap_or((l.len(), ch)).0)
|
||
}
|
||
})
|
||
.min()
|
||
.unwrap_or(0);
|
||
if x > 0 {
|
||
Cow::Owned(
|
||
s.lines()
|
||
.enumerate()
|
||
.map(|(i, l)| {
|
||
if (ignore_first && i == 0) || l.is_empty() {
|
||
l
|
||
} else {
|
||
l.split_at(x).1
|
||
}
|
||
})
|
||
.collect::<Vec<_>>()
|
||
.join("\n"),
|
||
)
|
||
} else {
|
||
s
|
||
}
|
||
}
|
||
|
||
/// Gets the parent expression, if any –- this is useful to constrain a lint.
|
||
pub fn get_parent_expr<'c>(cx: &'c LateContext<'_, '_>, e: &Expr) -> Option<&'c Expr> {
|
||
let map = &cx.tcx.hir();
|
||
let hir_id = e.hir_id;
|
||
let parent_id = map.get_parent_node_by_hir_id(hir_id);
|
||
if hir_id == parent_id {
|
||
return None;
|
||
}
|
||
map.find_by_hir_id(parent_id).and_then(|node| {
|
||
if let Node::Expr(parent) = node {
|
||
Some(parent)
|
||
} else {
|
||
None
|
||
}
|
||
})
|
||
}
|
||
|
||
pub fn get_enclosing_block<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, node: HirId) -> Option<&'tcx Block> {
|
||
let map = &cx.tcx.hir();
|
||
let node_id = map.hir_to_node_id(node);
|
||
let enclosing_node = map
|
||
.get_enclosing_scope(node_id)
|
||
.and_then(|enclosing_id| map.find(enclosing_id));
|
||
if let Some(node) = enclosing_node {
|
||
match node {
|
||
Node::Block(block) => Some(block),
|
||
Node::Item(&Item {
|
||
node: ItemKind::Fn(_, _, _, eid),
|
||
..
|
||
})
|
||
| Node::ImplItem(&ImplItem {
|
||
node: ImplItemKind::Method(_, eid),
|
||
..
|
||
}) => match cx.tcx.hir().body(eid).value.node {
|
||
ExprKind::Block(ref block, _) => Some(block),
|
||
_ => None,
|
||
},
|
||
_ => None,
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Returns the base type for HIR references and pointers.
|
||
pub fn walk_ptrs_hir_ty(ty: &hir::Ty) -> &hir::Ty {
|
||
match ty.node {
|
||
TyKind::Ptr(ref mut_ty) | TyKind::Rptr(_, ref mut_ty) => walk_ptrs_hir_ty(&mut_ty.ty),
|
||
_ => ty,
|
||
}
|
||
}
|
||
|
||
/// Returns the base type for references and raw pointers.
|
||
pub fn walk_ptrs_ty(ty: Ty<'_>) -> Ty<'_> {
|
||
match ty.sty {
|
||
ty::Ref(_, ty, _) => walk_ptrs_ty(ty),
|
||
_ => ty,
|
||
}
|
||
}
|
||
|
||
/// Returns the base type for references and raw pointers, and count reference
|
||
/// depth.
|
||
pub fn walk_ptrs_ty_depth(ty: Ty<'_>) -> (Ty<'_>, usize) {
|
||
fn inner(ty: Ty<'_>, depth: usize) -> (Ty<'_>, usize) {
|
||
match ty.sty {
|
||
ty::Ref(_, ty, _) => inner(ty, depth + 1),
|
||
_ => (ty, depth),
|
||
}
|
||
}
|
||
inner(ty, 0)
|
||
}
|
||
|
||
/// Checks whether the given expression is a constant literal of the given value.
|
||
pub fn is_integer_literal(expr: &Expr, value: u128) -> bool {
|
||
// FIXME: use constant folding
|
||
if let ExprKind::Lit(ref spanned) = expr.node {
|
||
if let LitKind::Int(v, _) = spanned.node {
|
||
return v == value;
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Returns `true` if the given `Expr` has been coerced before.
|
||
///
|
||
/// Examples of coercions can be found in the Nomicon at
|
||
/// <https://doc.rust-lang.org/nomicon/coercions.html>.
|
||
///
|
||
/// See `rustc::ty::adjustment::Adjustment` and `rustc_typeck::check::coercion` for more
|
||
/// information on adjustments and coercions.
|
||
pub fn is_adjusted(cx: &LateContext<'_, '_>, e: &Expr) -> bool {
|
||
cx.tables.adjustments().get(e.hir_id).is_some()
|
||
}
|
||
|
||
/// Returns the pre-expansion span if is this comes from an expansion of the
|
||
/// macro `name`.
|
||
/// See also `is_direct_expn_of`.
|
||
pub fn is_expn_of(mut span: Span, name: &str) -> Option<Span> {
|
||
loop {
|
||
let span_name_span = span
|
||
.ctxt()
|
||
.outer()
|
||
.expn_info()
|
||
.map(|ei| (ei.format.name(), ei.call_site));
|
||
|
||
match span_name_span {
|
||
Some((mac_name, new_span)) if mac_name == name => return Some(new_span),
|
||
None => return None,
|
||
Some((_, new_span)) => span = new_span,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Returns the pre-expansion span if the span directly comes from an expansion
|
||
/// of the macro `name`.
|
||
/// The difference with `is_expn_of` is that in
|
||
/// ```rust,ignore
|
||
/// foo!(bar!(42));
|
||
/// ```
|
||
/// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only
|
||
/// `bar!` by
|
||
/// `is_direct_expn_of`.
|
||
pub fn is_direct_expn_of(span: Span, name: &str) -> Option<Span> {
|
||
let span_name_span = span
|
||
.ctxt()
|
||
.outer()
|
||
.expn_info()
|
||
.map(|ei| (ei.format.name(), ei.call_site));
|
||
|
||
match span_name_span {
|
||
Some((mac_name, new_span)) if mac_name == name => Some(new_span),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
/// Convenience function to get the return type of a function.
|
||
pub fn return_ty<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, fn_item: hir::HirId) -> Ty<'tcx> {
|
||
let fn_def_id = cx.tcx.hir().local_def_id_from_hir_id(fn_item);
|
||
let ret_ty = cx.tcx.fn_sig(fn_def_id).output();
|
||
cx.tcx.erase_late_bound_regions(&ret_ty)
|
||
}
|
||
|
||
/// Checks if two types are the same.
|
||
///
|
||
/// This discards any lifetime annotations, too.
|
||
//
|
||
// FIXME: this works correctly for lifetimes bounds (`for <'a> Foo<'a>` ==
|
||
// `for <'b> Foo<'b>`, but not for type parameters).
|
||
pub fn same_tys<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
|
||
let a = cx.tcx.erase_late_bound_regions(&Binder::bind(a));
|
||
let b = cx.tcx.erase_late_bound_regions(&Binder::bind(b));
|
||
cx.tcx
|
||
.infer_ctxt()
|
||
.enter(|infcx| infcx.can_eq(cx.param_env, a, b).is_ok())
|
||
}
|
||
|
||
/// Returns `true` if the given type is an `unsafe` function.
|
||
pub fn type_is_unsafe_function<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
|
||
match ty.sty {
|
||
ty::FnDef(..) | ty::FnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe,
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
pub fn is_copy<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
|
||
ty.is_copy_modulo_regions(cx.tcx.global_tcx(), cx.param_env, DUMMY_SP)
|
||
}
|
||
|
||
/// Returns `true` if a pattern is refutable.
|
||
pub fn is_refutable(cx: &LateContext<'_, '_>, pat: &Pat) -> bool {
|
||
fn is_enum_variant(cx: &LateContext<'_, '_>, qpath: &QPath, id: HirId) -> bool {
|
||
matches!(
|
||
cx.tables.qpath_def(qpath, id),
|
||
def::Def::Variant(..) | def::Def::Ctor(_, def::CtorOf::Variant, _)
|
||
)
|
||
}
|
||
|
||
fn are_refutable<'a, I: Iterator<Item = &'a Pat>>(cx: &LateContext<'_, '_>, mut i: I) -> bool {
|
||
i.any(|pat| is_refutable(cx, pat))
|
||
}
|
||
|
||
match pat.node {
|
||
PatKind::Binding(..) | PatKind::Wild => false,
|
||
PatKind::Box(ref pat) | PatKind::Ref(ref pat, _) => is_refutable(cx, pat),
|
||
PatKind::Lit(..) | PatKind::Range(..) => true,
|
||
PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.hir_id),
|
||
PatKind::Tuple(ref pats, _) => are_refutable(cx, pats.iter().map(|pat| &**pat)),
|
||
PatKind::Struct(ref qpath, ref fields, _) => {
|
||
if is_enum_variant(cx, qpath, pat.hir_id) {
|
||
true
|
||
} else {
|
||
are_refutable(cx, fields.iter().map(|field| &*field.node.pat))
|
||
}
|
||
},
|
||
PatKind::TupleStruct(ref qpath, ref pats, _) => {
|
||
if is_enum_variant(cx, qpath, pat.hir_id) {
|
||
true
|
||
} else {
|
||
are_refutable(cx, pats.iter().map(|pat| &**pat))
|
||
}
|
||
},
|
||
PatKind::Slice(ref head, ref middle, ref tail) => {
|
||
are_refutable(cx, head.iter().chain(middle).chain(tail.iter()).map(|pat| &**pat))
|
||
},
|
||
}
|
||
}
|
||
|
||
/// Checks for the `#[automatically_derived]` attribute all `#[derive]`d
|
||
/// implementations have.
|
||
pub fn is_automatically_derived(attrs: &[ast::Attribute]) -> bool {
|
||
attr::contains_name(attrs, "automatically_derived")
|
||
}
|
||
|
||
/// Remove blocks around an expression.
|
||
///
|
||
/// Ie. `x`, `{ x }` and `{{{{ x }}}}` all give `x`. `{ x; y }` and `{}` return
|
||
/// themselves.
|
||
pub fn remove_blocks(expr: &Expr) -> &Expr {
|
||
if let ExprKind::Block(ref block, _) = expr.node {
|
||
if block.stmts.is_empty() {
|
||
if let Some(ref expr) = block.expr {
|
||
remove_blocks(expr)
|
||
} else {
|
||
expr
|
||
}
|
||
} else {
|
||
expr
|
||
}
|
||
} else {
|
||
expr
|
||
}
|
||
}
|
||
|
||
pub fn is_self(slf: &Arg) -> bool {
|
||
if let PatKind::Binding(.., name, _) = slf.pat.node {
|
||
name.name == keywords::SelfLower.name()
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
pub fn is_self_ty(slf: &hir::Ty) -> bool {
|
||
if_chain! {
|
||
if let TyKind::Path(ref qp) = slf.node;
|
||
if let QPath::Resolved(None, ref path) = *qp;
|
||
if let Def::SelfTy(..) = path.def;
|
||
then {
|
||
return true
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
pub fn iter_input_pats<'tcx>(decl: &FnDecl, body: &'tcx Body) -> impl Iterator<Item = &'tcx Arg> {
|
||
(0..decl.inputs.len()).map(move |i| &body.arguments[i])
|
||
}
|
||
|
||
/// Checks if a given expression is a match expression expanded from the `?`
|
||
/// operator or the `try` macro.
|
||
pub fn is_try<'a>(cx: &'_ LateContext<'_, '_>, expr: &'a Expr) -> Option<&'a Expr> {
|
||
fn is_ok(cx: &'_ LateContext<'_, '_>, arm: &Arm) -> bool {
|
||
if_chain! {
|
||
if let PatKind::TupleStruct(ref path, ref pat, None) = arm.pats[0].node;
|
||
if match_qpath(path, &paths::RESULT_OK[1..]);
|
||
if let PatKind::Binding(_, hir_id, _, None) = pat[0].node;
|
||
if let ExprKind::Path(QPath::Resolved(None, ref path)) = arm.body.node;
|
||
if let Def::Local(lid) = path.def;
|
||
if cx.tcx.hir().node_to_hir_id(lid) == hir_id;
|
||
then {
|
||
return true;
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
fn is_err(arm: &Arm) -> bool {
|
||
if let PatKind::TupleStruct(ref path, _, _) = arm.pats[0].node {
|
||
match_qpath(path, &paths::RESULT_ERR[1..])
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
if let ExprKind::Match(_, ref arms, ref source) = expr.node {
|
||
// desugared from a `?` operator
|
||
if let MatchSource::TryDesugar = *source {
|
||
return Some(expr);
|
||
}
|
||
|
||
if_chain! {
|
||
if arms.len() == 2;
|
||
if arms[0].pats.len() == 1 && arms[0].guard.is_none();
|
||
if arms[1].pats.len() == 1 && arms[1].guard.is_none();
|
||
if (is_ok(cx, &arms[0]) && is_err(&arms[1])) ||
|
||
(is_ok(cx, &arms[1]) && is_err(&arms[0]));
|
||
then {
|
||
return Some(expr);
|
||
}
|
||
}
|
||
}
|
||
|
||
None
|
||
}
|
||
|
||
/// Returns `true` if the lint is allowed in the current context
|
||
///
|
||
/// Useful for skipping long running code when it's unnecessary
|
||
pub fn is_allowed(cx: &LateContext<'_, '_>, lint: &'static Lint, id: HirId) -> bool {
|
||
cx.tcx.lint_level_at_node(lint, id).0 == Level::Allow
|
||
}
|
||
|
||
pub fn get_arg_name(pat: &Pat) -> Option<ast::Name> {
|
||
match pat.node {
|
||
PatKind::Binding(.., ident, None) => Some(ident.name),
|
||
PatKind::Ref(ref subpat, _) => get_arg_name(subpat),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
pub fn int_bits(tcx: TyCtxt<'_, '_, '_>, ity: ast::IntTy) -> u64 {
|
||
layout::Integer::from_attr(&tcx, attr::IntType::SignedInt(ity))
|
||
.size()
|
||
.bits()
|
||
}
|
||
|
||
#[allow(clippy::cast_possible_wrap)]
|
||
/// Turn a constant int byte representation into an i128
|
||
pub fn sext(tcx: TyCtxt<'_, '_, '_>, u: u128, ity: ast::IntTy) -> i128 {
|
||
let amt = 128 - int_bits(tcx, ity);
|
||
((u as i128) << amt) >> amt
|
||
}
|
||
|
||
#[allow(clippy::cast_sign_loss)]
|
||
/// clip unused bytes
|
||
pub fn unsext(tcx: TyCtxt<'_, '_, '_>, u: i128, ity: ast::IntTy) -> u128 {
|
||
let amt = 128 - int_bits(tcx, ity);
|
||
((u as u128) << amt) >> amt
|
||
}
|
||
|
||
/// clip unused bytes
|
||
pub fn clip(tcx: TyCtxt<'_, '_, '_>, u: u128, ity: ast::UintTy) -> u128 {
|
||
let bits = layout::Integer::from_attr(&tcx, attr::IntType::UnsignedInt(ity))
|
||
.size()
|
||
.bits();
|
||
let amt = 128 - bits;
|
||
(u << amt) >> amt
|
||
}
|
||
|
||
/// Removes block comments from the given `Vec` of lines.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```rust,ignore
|
||
/// without_block_comments(vec!["/*", "foo", "*/"]);
|
||
/// // => vec![]
|
||
///
|
||
/// without_block_comments(vec!["bar", "/*", "foo", "*/"]);
|
||
/// // => vec!["bar"]
|
||
/// ```
|
||
pub fn without_block_comments(lines: Vec<&str>) -> Vec<&str> {
|
||
let mut without = vec![];
|
||
|
||
let mut nest_level = 0;
|
||
|
||
for line in lines {
|
||
if line.contains("/*") {
|
||
nest_level += 1;
|
||
continue;
|
||
} else if line.contains("*/") {
|
||
nest_level -= 1;
|
||
continue;
|
||
}
|
||
|
||
if nest_level == 0 {
|
||
without.push(line);
|
||
}
|
||
}
|
||
|
||
without
|
||
}
|
||
|
||
pub fn any_parent_is_automatically_derived(tcx: TyCtxt<'_, '_, '_>, node: HirId) -> bool {
|
||
let map = &tcx.hir();
|
||
let mut prev_enclosing_node = None;
|
||
let mut enclosing_node = node;
|
||
while Some(enclosing_node) != prev_enclosing_node {
|
||
if is_automatically_derived(map.attrs_by_hir_id(enclosing_node)) {
|
||
return true;
|
||
}
|
||
prev_enclosing_node = Some(enclosing_node);
|
||
enclosing_node = map.get_parent_item(enclosing_node);
|
||
}
|
||
false
|
||
}
|
||
|
||
/// Returns true if ty has `iter` or `iter_mut` methods
|
||
pub fn has_iter_method(cx: &LateContext<'_, '_>, probably_ref_ty: Ty<'_>) -> Option<&'static str> {
|
||
// FIXME: instead of this hard-coded list, we should check if `<adt>::iter`
|
||
// exists and has the desired signature. Unfortunately FnCtxt is not exported
|
||
// so we can't use its `lookup_method` method.
|
||
static INTO_ITER_COLLECTIONS: [&[&str]; 13] = [
|
||
&paths::VEC,
|
||
&paths::OPTION,
|
||
&paths::RESULT,
|
||
&paths::BTREESET,
|
||
&paths::BTREEMAP,
|
||
&paths::VEC_DEQUE,
|
||
&paths::LINKED_LIST,
|
||
&paths::BINARY_HEAP,
|
||
&paths::HASHSET,
|
||
&paths::HASHMAP,
|
||
&paths::PATH_BUF,
|
||
&paths::PATH,
|
||
&paths::RECEIVER,
|
||
];
|
||
|
||
let ty_to_check = match probably_ref_ty.sty {
|
||
ty::Ref(_, ty_to_check, _) => ty_to_check,
|
||
_ => probably_ref_ty,
|
||
};
|
||
|
||
let def_id = match ty_to_check.sty {
|
||
ty::Array(..) => return Some("array"),
|
||
ty::Slice(..) => return Some("slice"),
|
||
ty::Adt(adt, _) => adt.did,
|
||
_ => return None,
|
||
};
|
||
|
||
for path in &INTO_ITER_COLLECTIONS {
|
||
if match_def_path(cx.tcx, def_id, path) {
|
||
return Some(path.last().unwrap());
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod test {
|
||
use super::{trim_multiline, without_block_comments};
|
||
|
||
#[test]
|
||
fn test_trim_multiline_single_line() {
|
||
assert_eq!("", trim_multiline("".into(), false));
|
||
assert_eq!("...", trim_multiline("...".into(), false));
|
||
assert_eq!("...", trim_multiline(" ...".into(), false));
|
||
assert_eq!("...", trim_multiline("\t...".into(), false));
|
||
assert_eq!("...", trim_multiline("\t\t...".into(), false));
|
||
}
|
||
|
||
#[test]
|
||
#[rustfmt::skip]
|
||
fn test_trim_multiline_block() {
|
||
assert_eq!("\
|
||
if x {
|
||
y
|
||
} else {
|
||
z
|
||
}", trim_multiline(" if x {
|
||
y
|
||
} else {
|
||
z
|
||
}".into(), false));
|
||
assert_eq!("\
|
||
if x {
|
||
\ty
|
||
} else {
|
||
\tz
|
||
}", trim_multiline(" if x {
|
||
\ty
|
||
} else {
|
||
\tz
|
||
}".into(), false));
|
||
}
|
||
|
||
#[test]
|
||
#[rustfmt::skip]
|
||
fn test_trim_multiline_empty_line() {
|
||
assert_eq!("\
|
||
if x {
|
||
y
|
||
|
||
} else {
|
||
z
|
||
}", trim_multiline(" if x {
|
||
y
|
||
|
||
} else {
|
||
z
|
||
}".into(), false));
|
||
}
|
||
|
||
#[test]
|
||
fn test_without_block_comments_lines_without_block_comments() {
|
||
let result = without_block_comments(vec!["/*", "", "*/"]);
|
||
println!("result: {:?}", result);
|
||
assert!(result.is_empty());
|
||
|
||
let result = without_block_comments(vec!["", "/*", "", "*/", "#[crate_type = \"lib\"]", "/*", "", "*/", ""]);
|
||
assert_eq!(result, vec!["", "#[crate_type = \"lib\"]", ""]);
|
||
|
||
let result = without_block_comments(vec!["/* rust", "", "*/"]);
|
||
assert!(result.is_empty());
|
||
|
||
let result = without_block_comments(vec!["/* one-line comment */"]);
|
||
assert!(result.is_empty());
|
||
|
||
let result = without_block_comments(vec!["/* nested", "/* multi-line", "comment", "*/", "test", "*/"]);
|
||
assert!(result.is_empty());
|
||
|
||
let result = without_block_comments(vec!["/* nested /* inline /* comment */ test */ */"]);
|
||
assert!(result.is_empty());
|
||
|
||
let result = without_block_comments(vec!["foo", "bar", "baz"]);
|
||
assert_eq!(result, vec!["foo", "bar", "baz"]);
|
||
}
|
||
}
|