rust-clippy/src/methods.rs

436 lines
20 KiB
Rust

use rustc_front::hir::*;
use rustc::lint::*;
use rustc::middle::ty;
use rustc::middle::subst::{Subst, TypeSpace};
use std::iter;
use std::borrow::Cow;
use utils::{snippet, span_lint, span_note_and_lint, match_path, match_type, walk_ptrs_ty_depth,
walk_ptrs_ty};
use utils::{OPTION_PATH, RESULT_PATH, STRING_PATH};
use self::SelfKind::*;
use self::OutType::*;
#[derive(Clone)]
pub struct MethodsPass;
/// **What it does:** This lint checks for `.unwrap()` calls on `Option`s. It is `Allow` by default.
///
/// **Why is this bad?** Usually it is better to handle the `None` case, or to at least call `.expect(_)` with a more helpful message. Still, for a lot of quick-and-dirty code, `unwrap` is a good choice, which is why this lint is `Allow` by default.
///
/// **Known problems:** None
///
/// **Example:** `x.unwrap()`
declare_lint!(pub OPTION_UNWRAP_USED, Allow,
"using `Option.unwrap()`, which should at least get a better message using `expect()`");
/// **What it does:** This lint checks for `.unwrap()` calls on `Result`s. It is `Allow` by default.
///
/// **Why is this bad?** `result.unwrap()` will let the thread panic on `Err` values. Normally, you want to implement more sophisticated error handling, and propagate errors upwards with `try!`.
///
/// Even if you want to panic on errors, not all `Error`s implement good messages on display. Therefore it may be beneficial to look at the places where they may get displayed. Activate this lint to do just that.
///
/// **Known problems:** None
///
/// **Example:** `x.unwrap()`
declare_lint!(pub RESULT_UNWRAP_USED, Allow,
"using `Result.unwrap()`, which might be better handled");
/// **What it does:** This lint checks for `.to_string()` method calls on values of type `&str`. It is `Warn` by default.
///
/// **Why is this bad?** This uses the whole formatting machinery just to clone a string. Using `.to_owned()` is lighter on resources. You can also consider using a [`Cow<'a, str>`](http://doc.rust-lang.org/std/borrow/enum.Cow.html) instead in some cases.
///
/// **Known problems:** None
///
/// **Example:** `s.to_string()` where `s: &str`
declare_lint!(pub STR_TO_STRING, Warn,
"using `to_string()` on a str, which should be `to_owned()`");
/// **What it does:** This lint checks for `.to_string()` method calls on values of type `String`. It is `Warn` by default.
///
/// **Why is this bad?** As our string is already owned, this whole operation is basically a no-op, but still creates a clone of the string (which, if really wanted, should be done with `.clone()`).
///
/// **Known problems:** None
///
/// **Example:** `s.to_string()` where `s: String`
declare_lint!(pub STRING_TO_STRING, Warn,
"calling `String.to_string()` which is a no-op");
/// **What it does:** This lint checks for methods that should live in a trait implementation of a `std` trait (see [llogiq's blog post](http://llogiq.github.io/2015/07/30/traits.html) for further information) instead of an inherent implementation. It is `Warn` by default.
///
/// **Why is this bad?** Implementing the traits improve ergonomics for users of the code, often with very little cost. Also people seeing a `mul(..)` method may expect `*` to work equally, so you should have good reason to disappoint them.
///
/// **Known problems:** None
///
/// **Example:**
/// ```
/// struct X;
/// impl X {
/// fn add(&self, other: &X) -> X { .. }
/// }
/// ```
declare_lint!(pub SHOULD_IMPLEMENT_TRAIT, Warn,
"defining a method that should be implementing a std trait");
/// **What it does:** This lint checks for methods with certain name prefixes and `Warn`s (by default) if the prefix doesn't match how self is taken. The actual rules are:
///
/// |Prefix |`self` taken |
/// |-------|--------------------|
/// |`as_` |`&self` or &mut self|
/// |`from_`| none |
/// |`into_`|`self` |
/// |`is_` |`&self` or none |
/// |`to_` |`&self` |
///
/// **Why is this bad?** Consistency breeds readability. If you follow the conventions, your users won't be surprised that they e.g. need to supply a mutable reference to a `as_`.. function.
///
/// **Known problems:** None
///
/// **Example**
///
/// ```
/// impl X {
/// fn as_str(self) -> &str { .. }
/// }
/// ```
declare_lint!(pub WRONG_SELF_CONVENTION, Warn,
"defining a method named with an established prefix (like \"into_\") that takes \
`self` with the wrong convention");
/// **What it does:** This is the same as [`wrong_self_convention`](#wrong_self_convention), but for public items. This lint is `Allow` by default.
///
/// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention).
///
/// **Known problems:** Actually *renaming* the function may break clients if the function is part of the public interface. In that case, be mindful of the stability guarantees you've given your users.
///
/// **Example:**
/// ```
/// impl X {
/// pub fn as_str(self) -> &str { .. }
/// }
/// ```
declare_lint!(pub WRONG_PUB_SELF_CONVENTION, Allow,
"defining a public method named with an established prefix (like \"into_\") that takes \
`self` with the wrong convention");
declare_lint!(pub OK_EXPECT, Warn,
"using `ok().expect()`, which gives worse error messages than \
calling `expect` directly on the Result");
declare_lint!(pub OPTION_MAP_UNWRAP_OR, Warn,
"using `Option.map(f).unwrap_or(a)`, which is more succinctly expressed as \
`map_or(a, f)`)");
declare_lint!(pub OPTION_MAP_UNWRAP_OR_ELSE, Warn,
"using `Option.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \
`map_or_else(g, f)`)");
impl LintPass for MethodsPass {
fn get_lints(&self) -> LintArray {
lint_array!(OPTION_UNWRAP_USED, RESULT_UNWRAP_USED, STR_TO_STRING, STRING_TO_STRING,
SHOULD_IMPLEMENT_TRAIT, WRONG_SELF_CONVENTION, OK_EXPECT, OPTION_MAP_UNWRAP_OR,
OPTION_MAP_UNWRAP_OR_ELSE)
}
}
impl LateLintPass for MethodsPass {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprMethodCall(ref name, _, ref args) = expr.node {
let (obj_ty, ptr_depth) = walk_ptrs_ty_depth(cx.tcx.expr_ty(&args[0]));
match &*name.node.as_str() {
"unwrap" if match_type(cx, obj_ty, &OPTION_PATH) => {
span_lint(cx, OPTION_UNWRAP_USED, expr.span,
"used unwrap() on an Option value. If you don't want \
to handle the None case gracefully, consider using \
expect() to provide a better panic message");
},
"unwrap" if match_type(cx, obj_ty, &RESULT_PATH) => {
span_lint(cx, RESULT_UNWRAP_USED, expr.span,
"used unwrap() on a Result value. Graceful handling \
of Err values is preferred");
},
"to_string" if obj_ty.sty == ty::TyStr => {
let mut arg_str = snippet(cx, args[0].span, "_");
if ptr_depth > 1 {
arg_str = Cow::Owned(format!(
"({}{})",
iter::repeat('*').take(ptr_depth - 1).collect::<String>(),
arg_str));
}
span_lint(cx, STR_TO_STRING, expr.span, &format!(
"`{}.to_owned()` is faster", arg_str));
},
"to_string" if match_type(cx, obj_ty, &STRING_PATH) => {
span_lint(cx, STRING_TO_STRING, expr.span, "`String.to_string()` is a no-op; use \
`clone()` to make a copy");
},
"expect" => if let ExprMethodCall(ref inner_name, _, ref inner_args) = args[0].node {
if inner_name.node.as_str() == "ok"
&& match_type(cx, cx.tcx.expr_ty(&inner_args[0]), &RESULT_PATH) {
let result_type = cx.tcx.expr_ty(&inner_args[0]);
if let Some(error_type) = get_error_type(cx, result_type) {
if has_debug_impl(error_type, cx) {
span_lint(cx, OK_EXPECT, expr.span,
"called `ok().expect()` on a Result \
value. You can call `expect` directly \
on the `Result`");
}
}
}
},
// check Option.map(_).unwrap_or(_)
"unwrap_or" => if let ExprMethodCall(ref inner_name, _, ref inner_args) = args[0].node {
if inner_name.node.as_str() == "map"
&& match_type(cx, cx.tcx.expr_ty(&inner_args[0]), &OPTION_PATH) {
// lint message
let msg =
"called `map(f).unwrap_or(a)` on an Option value. This can be done \
more directly by calling `map_or(a, f)` instead";
// get args to map() and unwrap_or()
let map_arg = snippet(cx, inner_args[1].span, "..");
let unwrap_arg = snippet(cx, args[1].span, "..");
// lint, with note if neither arg is > 1 line and both map() and
// unwrap_or() have the same span
let multiline = map_arg.lines().count() > 1
|| unwrap_arg.lines().count() > 1;
let same_span = inner_args[1].span.expn_id == args[1].span.expn_id;
if same_span && !multiline {
span_note_and_lint(
cx, OPTION_MAP_UNWRAP_OR, expr.span, msg, expr.span,
&format!("replace this with map_or({1}, {0})",
map_arg, unwrap_arg)
);
}
else if same_span && multiline {
span_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg);
};
}
},
// check Option.map(_).unwrap_or_else(_)
"unwrap_or_else" => if let ExprMethodCall(ref inner_name, _, ref inner_args) = args[0].node {
if inner_name.node.as_str() == "map"
&& match_type(cx, cx.tcx.expr_ty(&inner_args[0]), &OPTION_PATH) {
// lint message
let msg =
"called `map(f).unwrap_or_else(g)` on an Option value. This can be \
done more directly by calling `map_or_else(g, f)` instead";
// get args to map() and unwrap_or_else()
let map_arg = snippet(cx, inner_args[1].span, "..");
let unwrap_arg = snippet(cx, args[1].span, "..");
// lint, with note if neither arg is > 1 line and both map() and
// unwrap_or_else() have the same span
let multiline = map_arg.lines().count() > 1
|| unwrap_arg.lines().count() > 1;
let same_span = inner_args[1].span.expn_id == args[1].span.expn_id;
if same_span && !multiline {
span_note_and_lint(
cx, OPTION_MAP_UNWRAP_OR_ELSE, expr.span, msg, expr.span,
&format!("replace this with map_or_else({1}, {0})",
map_arg, unwrap_arg)
);
}
else if same_span && multiline {
span_lint(cx, OPTION_MAP_UNWRAP_OR_ELSE, expr.span, msg);
};
}
},
_ => {},
}
}
}
fn check_item(&mut self, cx: &LateContext, item: &Item) {
if let ItemImpl(_, _, _, None, ref ty, ref items) = item.node {
for implitem in items {
let name = implitem.name;
if let ImplItemKind::Method(ref sig, _) = implitem.node {
// check missing trait implementations
for &(method_name, n_args, self_kind, out_type, trait_name) in &TRAIT_METHODS {
if_let_chain! {
[
name.as_str() == method_name,
sig.decl.inputs.len() == n_args,
out_type.matches(&sig.decl.output),
self_kind.matches(&sig.explicit_self.node, false)
], {
span_lint(cx, SHOULD_IMPLEMENT_TRAIT, implitem.span, &format!(
"defining a method called `{}` on this type; consider implementing \
the `{}` trait or choosing a less ambiguous name", name, trait_name));
}
}
}
// check conventions w.r.t. conversion method names and predicates
let is_copy = is_copy(cx, &ty, &item);
for &(prefix, self_kinds) in &CONVENTIONS {
if name.as_str().starts_with(prefix) &&
!self_kinds.iter().any(|k| k.matches(&sig.explicit_self.node, is_copy)) {
let lint = if item.vis == Visibility::Public {
WRONG_PUB_SELF_CONVENTION
} else {
WRONG_SELF_CONVENTION
};
span_lint(cx, lint, sig.explicit_self.span, &format!(
"methods called `{}*` usually take {}; consider choosing a less \
ambiguous name", prefix,
&self_kinds.iter().map(|k| k.description()).collect::<Vec<_>>().join(" or ")));
}
}
}
}
}
}
}
// Given a `Result<T, E>` type, return its error type (`E`)
fn get_error_type<'a>(cx: &LateContext, ty: ty::Ty<'a>) -> Option<ty::Ty<'a>> {
if !match_type(cx, ty, &RESULT_PATH) {
return None;
}
if let ty::TyEnum(_, substs) = ty.sty {
if let Some(err_ty) = substs.types.opt_get(TypeSpace, 1) {
return Some(err_ty);
}
}
None
}
// This checks whether a given type is known to implement Debug. It's
// conservative, i.e. it should not return false positives, but will return
// false negatives.
fn has_debug_impl<'a, 'b>(ty: ty::Ty<'a>, cx: &LateContext<'b, 'a>) -> bool {
let no_ref_ty = walk_ptrs_ty(ty);
let debug = match cx.tcx.lang_items.debug_trait() {
Some(debug) => debug,
None => return false
};
let debug_def = cx.tcx.lookup_trait_def(debug);
let mut debug_impl_exists = false;
debug_def.for_each_relevant_impl(cx.tcx, no_ref_ty, |d| {
let self_ty = &cx.tcx.impl_trait_ref(d).and_then(|im| im.substs.self_ty());
if let Some(self_ty) = *self_ty {
if !self_ty.flags.get().contains(ty::TypeFlags::HAS_PARAMS) {
debug_impl_exists = true;
}
}
});
debug_impl_exists
}
const CONVENTIONS: [(&'static str, &'static [SelfKind]); 5] = [
("into_", &[ValueSelf]),
("to_", &[RefSelf]),
("as_", &[RefSelf, RefMutSelf]),
("is_", &[RefSelf, NoSelf]),
("from_", &[NoSelf]),
];
const TRAIT_METHODS: [(&'static str, usize, SelfKind, OutType, &'static str); 30] = [
("add", 2, ValueSelf, AnyType, "std::ops::Add"),
("sub", 2, ValueSelf, AnyType, "std::ops::Sub"),
("mul", 2, ValueSelf, AnyType, "std::ops::Mul"),
("div", 2, ValueSelf, AnyType, "std::ops::Div"),
("rem", 2, ValueSelf, AnyType, "std::ops::Rem"),
("shl", 2, ValueSelf, AnyType, "std::ops::Shl"),
("shr", 2, ValueSelf, AnyType, "std::ops::Shr"),
("bitand", 2, ValueSelf, AnyType, "std::ops::BitAnd"),
("bitor", 2, ValueSelf, AnyType, "std::ops::BitOr"),
("bitxor", 2, ValueSelf, AnyType, "std::ops::BitXor"),
("neg", 1, ValueSelf, AnyType, "std::ops::Neg"),
("not", 1, ValueSelf, AnyType, "std::ops::Not"),
("drop", 1, RefMutSelf, UnitType, "std::ops::Drop"),
("index", 2, RefSelf, RefType, "std::ops::Index"),
("index_mut", 2, RefMutSelf, RefType, "std::ops::IndexMut"),
("deref", 1, RefSelf, RefType, "std::ops::Deref"),
("deref_mut", 1, RefMutSelf, RefType, "std::ops::DerefMut"),
("clone", 1, RefSelf, AnyType, "std::clone::Clone"),
("borrow", 1, RefSelf, RefType, "std::borrow::Borrow"),
("borrow_mut", 1, RefMutSelf, RefType, "std::borrow::BorrowMut"),
("as_ref", 1, RefSelf, RefType, "std::convert::AsRef"),
("as_mut", 1, RefMutSelf, RefType, "std::convert::AsMut"),
("eq", 2, RefSelf, BoolType, "std::cmp::PartialEq"),
("cmp", 2, RefSelf, AnyType, "std::cmp::Ord"),
("default", 0, NoSelf, AnyType, "std::default::Default"),
("hash", 2, RefSelf, UnitType, "std::hash::Hash"),
("next", 1, RefMutSelf, AnyType, "std::iter::Iterator"),
("into_iter", 1, ValueSelf, AnyType, "std::iter::IntoIterator"),
("from_iter", 1, NoSelf, AnyType, "std::iter::FromIterator"),
("from_str", 1, NoSelf, AnyType, "std::str::FromStr"),
];
#[derive(Clone, Copy)]
enum SelfKind {
ValueSelf,
RefSelf,
RefMutSelf,
NoSelf,
}
impl SelfKind {
fn matches(&self, slf: &ExplicitSelf_, allow_value_for_ref: bool) -> bool {
match (self, slf) {
(&ValueSelf, &SelfValue(_)) => true,
(&RefSelf, &SelfRegion(_, Mutability::MutImmutable, _)) => true,
(&RefMutSelf, &SelfRegion(_, Mutability::MutMutable, _)) => true,
(&RefSelf, &SelfValue(_)) => allow_value_for_ref,
(&RefMutSelf, &SelfValue(_)) => allow_value_for_ref,
(&NoSelf, &SelfStatic) => true,
(_, &SelfExplicit(ref ty, _)) => self.matches_explicit_type(ty, allow_value_for_ref),
_ => false
}
}
fn matches_explicit_type(&self, ty: &Ty, allow_value_for_ref: bool) -> bool {
match (self, &ty.node) {
(&ValueSelf, &TyPath(..)) => true,
(&RefSelf, &TyRptr(_, MutTy { mutbl: Mutability::MutImmutable, .. })) => true,
(&RefMutSelf, &TyRptr(_, MutTy { mutbl: Mutability::MutMutable, .. })) => true,
(&RefSelf, &TyPath(..)) => allow_value_for_ref,
(&RefMutSelf, &TyPath(..)) => allow_value_for_ref,
_ => false
}
}
fn description(&self) -> &'static str {
match *self {
ValueSelf => "self by value",
RefSelf => "self by reference",
RefMutSelf => "self by mutable reference",
NoSelf => "no self",
}
}
}
#[derive(Clone, Copy)]
enum OutType {
UnitType,
BoolType,
AnyType,
RefType,
}
impl OutType {
fn matches(&self, ty: &FunctionRetTy) -> bool {
match (self, ty) {
(&UnitType, &DefaultReturn(_)) => true,
(&UnitType, &Return(ref ty)) if ty.node == TyTup(vec![]) => true,
(&BoolType, &Return(ref ty)) if is_bool(ty) => true,
(&AnyType, &Return(ref ty)) if ty.node != TyTup(vec![]) => true,
(&RefType, &Return(ref ty)) => {
if let TyRptr(_, _) = ty.node { true } else { false }
}
_ => false
}
}
}
fn is_bool(ty: &Ty) -> bool {
if let TyPath(None, ref p) = ty.node {
if match_path(p, &["bool"]) {
return true;
}
}
false
}
fn is_copy(cx: &LateContext, ast_ty: &Ty, item: &Item) -> bool {
match cx.tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) {
None => false,
Some(ty) => {
let env = ty::ParameterEnvironment::for_item(cx.tcx, item.id);
!ty.subst(cx.tcx, &env.free_substs).moves_by_default(&env, ast_ty.span)
}
}
}