rust-clippy/clippy_lints/src/use_self.rs

463 lines
16 KiB
Rust

use crate::utils::{in_macro, meets_msrv, snippet_opt, span_lint_and_sugg};
use if_chain::if_chain;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::{
def,
def_id::LocalDefId,
intravisit::{walk_ty, NestedVisitorMap, Visitor},
Expr, ExprKind, FnRetTy, FnSig, GenericArg, HirId, Impl, ImplItemKind, Item, ItemKind, Node, Path, PathSegment,
QPath, TyKind,
};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::hir::map::Map;
use rustc_middle::ty::{AssocKind, Ty, TyS};
use rustc_semver::RustcVersion;
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::{BytePos, Span};
use rustc_typeck::hir_ty_to_ty;
declare_clippy_lint! {
/// **What it does:** Checks for unnecessary repetition of structure name when a
/// replacement with `Self` is applicable.
///
/// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct
/// name
/// feels inconsistent.
///
/// **Known problems:**
/// - Unaddressed false negative in fn bodies of trait implementations
/// - False positive with assotiated types in traits (#4140)
///
/// **Example:**
///
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Foo {
/// Foo {}
/// }
/// }
/// ```
/// could be
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Self {
/// Self {}
/// }
/// }
/// ```
pub USE_SELF,
nursery,
"unnecessary structure name repetition whereas `Self` is applicable"
}
#[derive(Default)]
pub struct UseSelf {
msrv: Option<RustcVersion>,
stack: Vec<StackItem>,
}
const USE_SELF_MSRV: RustcVersion = RustcVersion::new(1, 37, 0);
impl UseSelf {
#[must_use]
pub fn new(msrv: Option<RustcVersion>) -> Self {
Self {
msrv,
..Self::default()
}
}
}
#[derive(Debug)]
enum StackItem {
Check {
hir_id: HirId,
impl_trait_ref_def_id: Option<LocalDefId>,
types_to_skip: Vec<HirId>,
types_to_lint: Vec<HirId>,
},
NoCheck,
}
impl_lint_pass!(UseSelf => [USE_SELF]);
const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
impl<'tcx> LateLintPass<'tcx> for UseSelf {
fn check_item(&mut self, cx: &LateContext<'_>, item: &Item<'_>) {
// We push the self types of `impl`s on a stack here. Only the top type on the stack is
// relevant for linting, since this is the self type of the `impl` we're currently in. To
// avoid linting on nested items, we push `StackItem::NoCheck` on the stack to signal, that
// we're in an `impl` or nested item, that we don't want to lint
//
// NB: If you push something on the stack in this method, remember to also pop it in the
// `check_item_post` method.
match &item.kind {
ItemKind::Impl(Impl {
self_ty: hir_self_ty,
of_trait,
..
}) => {
let should_check = if let TyKind::Path(QPath::Resolved(_, ref item_path)) = hir_self_ty.kind {
let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
parameters.as_ref().map_or(true, |params| {
!params.parenthesized && !params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)))
})
} else {
false
};
let impl_trait_ref_def_id = of_trait.as_ref().map(|_| cx.tcx.hir().local_def_id(item.hir_id()));
if should_check {
self.stack.push(StackItem::Check {
hir_id: hir_self_ty.hir_id,
impl_trait_ref_def_id,
types_to_lint: Vec::new(),
types_to_skip: Vec::new(),
});
} else {
self.stack.push(StackItem::NoCheck);
}
},
ItemKind::Static(..)
| ItemKind::Const(..)
| ItemKind::Fn(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
| ItemKind::Union(..)
| ItemKind::Trait(..) => {
self.stack.push(StackItem::NoCheck);
},
_ => (),
}
}
fn check_item_post(&mut self, _: &LateContext<'_>, item: &Item<'_>) {
use ItemKind::{Const, Enum, Fn, Impl, Static, Struct, Trait, Union};
match item.kind {
Impl { .. } | Static(..) | Const(..) | Fn(..) | Enum(..) | Struct(..) | Union(..) | Trait(..) => {
self.stack.pop();
},
_ => (),
}
}
fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
// We want to skip types in trait `impl`s that aren't declared as `Self` in the trait
// declaration. The collection of those types is all this method implementation does.
if_chain! {
if let ImplItemKind::Fn(FnSig { decl, .. }, ..) = impl_item.kind;
if let Some(&mut StackItem::Check {
impl_trait_ref_def_id: Some(def_id),
ref mut types_to_skip,
..
}) = self.stack.last_mut();
if let Some(impl_trait_ref) = cx.tcx.impl_trait_ref(def_id);
then {
// `self_ty` is the semantic self type of `impl <trait> for <type>`. This cannot be
// `Self`.
let self_ty = impl_trait_ref.self_ty();
// `trait_method_sig` is the signature of the function, how it is declared in the
// trait, not in the impl of the trait.
let trait_method = cx
.tcx
.associated_items(impl_trait_ref.def_id)
.find_by_name_and_kind(cx.tcx, impl_item.ident, AssocKind::Fn, impl_trait_ref.def_id)
.expect("impl method matches a trait method");
let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
let trait_method_sig = cx.tcx.erase_late_bound_regions(trait_method_sig);
// `impl_inputs_outputs` is an iterator over the types (`hir::Ty`) declared in the
// implementation of the trait.
let output_hir_ty = if let FnRetTy::Return(ty) = &decl.output {
Some(&**ty)
} else {
None
};
let impl_inputs_outputs = decl.inputs.iter().chain(output_hir_ty);
// `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature.
//
// `trait_sem_ty` (of type `ty::Ty`) is the semantic type for the signature in the
// trait declaration. This is used to check if `Self` was used in the trait
// declaration.
//
// If `any`where in the `trait_sem_ty` the `self_ty` was used verbatim (as opposed
// to `Self`), we want to skip linting that type and all subtypes of it. This
// avoids suggestions to e.g. replace `Vec<u8>` with `Vec<Self>`, in an `impl Trait
// for u8`, when the trait always uses `Vec<u8>`.
//
// See also https://github.com/rust-lang/rust-clippy/issues/2894.
for (impl_hir_ty, trait_sem_ty) in impl_inputs_outputs.zip(trait_method_sig.inputs_and_output) {
if trait_sem_ty.walk().any(|inner| inner == self_ty.into()) {
let mut visitor = SkipTyCollector::default();
visitor.visit_ty(&impl_hir_ty);
types_to_skip.extend(visitor.types_to_skip);
}
}
}
}
}
fn check_body(&mut self, cx: &LateContext<'tcx>, body: &'tcx hir::Body<'_>) {
// `hir_ty_to_ty` cannot be called in `Body`s or it will panic (sometimes). But in bodies
// we can use `cx.typeck_results.node_type(..)` to get the `ty::Ty` from a `hir::Ty`.
// However the `node_type()` method can *only* be called in bodies.
//
// This method implementation determines which types should get linted in a `Body` and
// which shouldn't, with a visitor. We could directly lint in the visitor, but then we
// could only allow this lint on item scope. And we would have to check if those types are
// already dealt with in `check_ty` anyway.
if let Some(StackItem::Check {
hir_id,
types_to_lint,
types_to_skip,
..
}) = self.stack.last_mut()
{
let self_ty = ty_from_hir_id(cx, *hir_id);
let mut visitor = LintTyCollector {
cx,
self_ty,
types_to_lint: vec![],
types_to_skip: vec![],
};
visitor.visit_expr(&body.value);
types_to_lint.extend(visitor.types_to_lint);
types_to_skip.extend(visitor.types_to_skip);
}
}
fn check_ty(&mut self, cx: &LateContext<'_>, hir_ty: &hir::Ty<'_>) {
if in_macro(hir_ty.span) | in_impl(cx, hir_ty) | !meets_msrv(self.msrv.as_ref(), &USE_SELF_MSRV) {
return;
}
let lint_dependend_on_expr_kind = if let Some(StackItem::Check {
hir_id,
types_to_lint,
types_to_skip,
..
}) = self.stack.last()
{
if types_to_skip.contains(&hir_ty.hir_id) {
false
} else if types_to_lint.contains(&hir_ty.hir_id) {
true
} else {
let self_ty = ty_from_hir_id(cx, *hir_id);
should_lint_ty(hir_ty, hir_ty_to_ty(cx.tcx, hir_ty), self_ty)
}
} else {
false
};
if lint_dependend_on_expr_kind {
// FIXME: this span manipulation should not be necessary
// @flip1995 found an ast lowering issue in
// https://github.com/rust-lang/rust/blob/master/src/librustc_ast_lowering/path.rs#l142-l162
match cx.tcx.hir().find(cx.tcx.hir().get_parent_node(hir_ty.hir_id)) {
Some(Node::Expr(Expr {
kind: ExprKind::Path(QPath::TypeRelative(_, segment)),
..
})) => span_lint_until_last_segment(cx, hir_ty.span, segment),
_ => span_lint(cx, hir_ty.span),
}
}
}
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
fn expr_ty_matches(cx: &LateContext<'_>, expr: &Expr<'_>, self_ty: Ty<'_>) -> bool {
let def_id = expr.hir_id.owner;
if cx.tcx.has_typeck_results(def_id) {
cx.tcx.typeck(def_id).expr_ty_opt(expr) == Some(self_ty)
} else {
false
}
}
if in_macro(expr.span) | !meets_msrv(self.msrv.as_ref(), &USE_SELF_MSRV) {
return;
}
if let Some(StackItem::Check { hir_id, .. }) = self.stack.last() {
let self_ty = ty_from_hir_id(cx, *hir_id);
match &expr.kind {
ExprKind::Struct(QPath::Resolved(_, path), ..) => {
if expr_ty_matches(cx, expr, self_ty) {
match path.res {
def::Res::SelfTy(..) => (),
def::Res::Def(DefKind::Variant, _) => span_lint_on_path_until_last_segment(cx, path),
_ => {
span_lint(cx, path.span);
},
}
}
},
// tuple struct instantiation (`Foo(arg)` or `Enum::Foo(arg)`)
ExprKind::Call(fun, _) => {
if let Expr {
kind: ExprKind::Path(ref qpath),
..
} = fun
{
if expr_ty_matches(cx, expr, self_ty) {
let res = cx.qpath_res(qpath, fun.hir_id);
if let def::Res::Def(DefKind::Ctor(ctor_of, _), ..) = res {
match ctor_of {
def::CtorOf::Variant => {
span_lint_on_qpath_resolved(cx, qpath, true);
},
def::CtorOf::Struct => {
span_lint_on_qpath_resolved(cx, qpath, false);
},
}
}
}
}
},
// unit enum variants (`Enum::A`)
ExprKind::Path(qpath) => {
if expr_ty_matches(cx, expr, self_ty) {
span_lint_on_qpath_resolved(cx, &qpath, true);
}
},
_ => (),
}
}
}
extract_msrv_attr!(LateContext);
}
#[derive(Default)]
struct SkipTyCollector {
types_to_skip: Vec<HirId>,
}
impl<'tcx> Visitor<'tcx> for SkipTyCollector {
type Map = Map<'tcx>;
fn visit_ty(&mut self, hir_ty: &hir::Ty<'_>) {
self.types_to_skip.push(hir_ty.hir_id);
walk_ty(self, hir_ty)
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
struct LintTyCollector<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
self_ty: Ty<'tcx>,
types_to_lint: Vec<HirId>,
types_to_skip: Vec<HirId>,
}
impl<'a, 'tcx> Visitor<'tcx> for LintTyCollector<'a, 'tcx> {
type Map = Map<'tcx>;
fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'_>) {
if_chain! {
if let Some(ty) = self.cx.typeck_results().node_type_opt(hir_ty.hir_id);
if should_lint_ty(hir_ty, ty, self.self_ty);
then {
self.types_to_lint.push(hir_ty.hir_id);
} else {
self.types_to_skip.push(hir_ty.hir_id);
}
}
walk_ty(self, hir_ty)
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
fn span_lint(cx: &LateContext<'_>, span: Span) {
span_lint_and_sugg(
cx,
USE_SELF,
span,
"unnecessary structure name repetition",
"use the applicable keyword",
"Self".to_owned(),
Applicability::MachineApplicable,
);
}
#[allow(clippy::cast_possible_truncation)]
fn span_lint_until_last_segment(cx: &LateContext<'_>, span: Span, segment: &PathSegment<'_>) {
let sp = span.with_hi(segment.ident.span.lo());
// remove the trailing ::
let span_without_last_segment = match snippet_opt(cx, sp) {
Some(snippet) => match snippet.rfind("::") {
Some(bidx) => sp.with_hi(sp.lo() + BytePos(bidx as u32)),
None => sp,
},
None => sp,
};
span_lint(cx, span_without_last_segment);
}
fn span_lint_on_path_until_last_segment(cx: &LateContext<'_>, path: &Path<'_>) {
if path.segments.len() > 1 {
span_lint_until_last_segment(cx, path.span, path.segments.last().unwrap());
}
}
fn span_lint_on_qpath_resolved(cx: &LateContext<'_>, qpath: &QPath<'_>, until_last_segment: bool) {
if let QPath::Resolved(_, path) = qpath {
if until_last_segment {
span_lint_on_path_until_last_segment(cx, path);
} else {
span_lint(cx, path.span);
}
}
}
fn ty_from_hir_id<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Ty<'tcx> {
if let Some(Node::Ty(hir_ty)) = cx.tcx.hir().find(hir_id) {
hir_ty_to_ty(cx.tcx, hir_ty)
} else {
unreachable!("This function should only be called with `HirId`s that are for sure `Node::Ty`")
}
}
fn in_impl(cx: &LateContext<'tcx>, hir_ty: &hir::Ty<'_>) -> bool {
let map = cx.tcx.hir();
let parent = map.get_parent_node(hir_ty.hir_id);
if_chain! {
if let Some(Node::Item(item)) = map.find(parent);
if let ItemKind::Impl { .. } = item.kind;
then {
true
} else {
false
}
}
}
fn should_lint_ty(hir_ty: &hir::Ty<'_>, ty: Ty<'_>, self_ty: Ty<'_>) -> bool {
if_chain! {
if TyS::same_type(ty, self_ty);
if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind;
then {
!matches!(path.res, def::Res::SelfTy(..))
} else {
false
}
}
}