mirror of
https://github.com/rust-lang/rust-clippy
synced 2024-12-24 20:13:24 +00:00
204 lines
8.3 KiB
Rust
204 lines
8.3 KiB
Rust
use clippy_utils::diagnostics::span_lint;
|
|
use clippy_utils::{def_path_def_ids, trait_ref_of_method};
|
|
use rustc_data_structures::fx::FxHashSet;
|
|
use rustc_hir as hir;
|
|
use rustc_lint::{LateContext, LateLintPass};
|
|
use rustc_middle::ty::TypeVisitable;
|
|
use rustc_middle::ty::{Adt, Array, Ref, Slice, Tuple, Ty};
|
|
use rustc_session::{declare_tool_lint, impl_lint_pass};
|
|
use rustc_span::source_map::Span;
|
|
use rustc_span::symbol::sym;
|
|
use std::iter;
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for sets/maps with mutable key types.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// All of `HashMap`, `HashSet`, `BTreeMap` and
|
|
/// `BtreeSet` rely on either the hash or the order of keys be unchanging,
|
|
/// so having types with interior mutability is a bad idea.
|
|
///
|
|
/// ### Known problems
|
|
///
|
|
/// #### False Positives
|
|
/// It's correct to use a struct that contains interior mutability as a key, when its
|
|
/// implementation of `Hash` or `Ord` doesn't access any of the interior mutable types.
|
|
/// However, this lint is unable to recognize this, so it will often cause false positives in
|
|
/// theses cases. The `bytes` crate is a great example of this.
|
|
///
|
|
/// #### False Negatives
|
|
/// For custom `struct`s/`enum`s, this lint is unable to check for interior mutability behind
|
|
/// indirection. For example, `struct BadKey<'a>(&'a Cell<usize>)` will be seen as immutable
|
|
/// and cause a false negative if its implementation of `Hash`/`Ord` accesses the `Cell`.
|
|
///
|
|
/// This lint does check a few cases for indirection. Firstly, using some standard library
|
|
/// types (`Option`, `Result`, `Box`, `Rc`, `Arc`, `Vec`, `VecDeque`, `BTreeMap` and
|
|
/// `BTreeSet`) directly as keys (e.g. in `HashMap<Box<Cell<usize>>, ()>`) **will** trigger the
|
|
/// lint, because the impls of `Hash`/`Ord` for these types directly call `Hash`/`Ord` on their
|
|
/// contained type.
|
|
///
|
|
/// Secondly, the implementations of `Hash` and `Ord` for raw pointers (`*const T` or `*mut T`)
|
|
/// apply only to the **address** of the contained value. Therefore, interior mutability
|
|
/// behind raw pointers (e.g. in `HashSet<*mut Cell<usize>>`) can't impact the value of `Hash`
|
|
/// or `Ord`, and therefore will not trigger this link. For more info, see issue
|
|
/// [#6745](https://github.com/rust-lang/rust-clippy/issues/6745).
|
|
///
|
|
/// ### Example
|
|
/// ```rust
|
|
/// use std::cmp::{PartialEq, Eq};
|
|
/// use std::collections::HashSet;
|
|
/// use std::hash::{Hash, Hasher};
|
|
/// use std::sync::atomic::AtomicUsize;
|
|
///# #[allow(unused)]
|
|
///
|
|
/// struct Bad(AtomicUsize);
|
|
/// impl PartialEq for Bad {
|
|
/// fn eq(&self, rhs: &Self) -> bool {
|
|
/// ..
|
|
/// ; unimplemented!();
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl Eq for Bad {}
|
|
///
|
|
/// impl Hash for Bad {
|
|
/// fn hash<H: Hasher>(&self, h: &mut H) {
|
|
/// ..
|
|
/// ; unimplemented!();
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let _: HashSet<Bad> = HashSet::new();
|
|
/// }
|
|
/// ```
|
|
#[clippy::version = "1.42.0"]
|
|
pub MUTABLE_KEY_TYPE,
|
|
suspicious,
|
|
"Check for mutable `Map`/`Set` key type"
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct MutableKeyType {
|
|
ignore_interior_mutability: Vec<String>,
|
|
ignore_mut_def_ids: FxHashSet<hir::def_id::DefId>,
|
|
}
|
|
|
|
impl_lint_pass!(MutableKeyType => [ MUTABLE_KEY_TYPE ]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for MutableKeyType {
|
|
fn check_crate(&mut self, cx: &LateContext<'tcx>) {
|
|
self.ignore_mut_def_ids.clear();
|
|
let mut path = Vec::new();
|
|
for ty in &self.ignore_interior_mutability {
|
|
path.extend(ty.split("::"));
|
|
for id in def_path_def_ids(cx, &path[..]) {
|
|
self.ignore_mut_def_ids.insert(id);
|
|
}
|
|
path.clear();
|
|
}
|
|
}
|
|
|
|
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
|
|
if let hir::ItemKind::Fn(ref sig, ..) = item.kind {
|
|
self.check_sig(cx, item.hir_id(), sig.decl);
|
|
}
|
|
}
|
|
|
|
fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::ImplItem<'tcx>) {
|
|
if let hir::ImplItemKind::Fn(ref sig, ..) = item.kind {
|
|
if trait_ref_of_method(cx, item.owner_id.def_id).is_none() {
|
|
self.check_sig(cx, item.hir_id(), sig.decl);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::TraitItem<'tcx>) {
|
|
if let hir::TraitItemKind::Fn(ref sig, ..) = item.kind {
|
|
self.check_sig(cx, item.hir_id(), sig.decl);
|
|
}
|
|
}
|
|
|
|
fn check_local(&mut self, cx: &LateContext<'_>, local: &hir::Local<'_>) {
|
|
if let hir::PatKind::Wild = local.pat.kind {
|
|
return;
|
|
}
|
|
self.check_ty_(cx, local.span, cx.typeck_results().pat_ty(local.pat));
|
|
}
|
|
}
|
|
|
|
impl MutableKeyType {
|
|
pub fn new(ignore_interior_mutability: Vec<String>) -> Self {
|
|
Self {
|
|
ignore_interior_mutability,
|
|
ignore_mut_def_ids: FxHashSet::default(),
|
|
}
|
|
}
|
|
|
|
fn check_sig(&self, cx: &LateContext<'_>, item_hir_id: hir::HirId, decl: &hir::FnDecl<'_>) {
|
|
let fn_def_id = cx.tcx.hir().local_def_id(item_hir_id);
|
|
let fn_sig = cx.tcx.fn_sig(fn_def_id);
|
|
for (hir_ty, ty) in iter::zip(decl.inputs, fn_sig.inputs().skip_binder()) {
|
|
self.check_ty_(cx, hir_ty.span, *ty);
|
|
}
|
|
self.check_ty_(cx, decl.output.span(), cx.tcx.erase_late_bound_regions(fn_sig.output()));
|
|
}
|
|
|
|
// We want to lint 1. sets or maps with 2. not immutable key types and 3. no unerased
|
|
// generics (because the compiler cannot ensure immutability for unknown types).
|
|
fn check_ty_<'tcx>(&self, cx: &LateContext<'tcx>, span: Span, ty: Ty<'tcx>) {
|
|
let ty = ty.peel_refs();
|
|
if let Adt(def, substs) = ty.kind() {
|
|
let is_keyed_type = [sym::HashMap, sym::BTreeMap, sym::HashSet, sym::BTreeSet]
|
|
.iter()
|
|
.any(|diag_item| cx.tcx.is_diagnostic_item(*diag_item, def.did()));
|
|
if is_keyed_type && self.is_interior_mutable_type(cx, substs.type_at(0)) {
|
|
span_lint(cx, MUTABLE_KEY_TYPE, span, "mutable key type");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if a type contains interior mutability which would affect its implementation of
|
|
/// [`Hash`] or [`Ord`].
|
|
fn is_interior_mutable_type<'tcx>(&self, cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
|
|
match *ty.kind() {
|
|
Ref(_, inner_ty, mutbl) => mutbl == hir::Mutability::Mut || self.is_interior_mutable_type(cx, inner_ty),
|
|
Slice(inner_ty) => self.is_interior_mutable_type(cx, inner_ty),
|
|
Array(inner_ty, size) => {
|
|
size.try_eval_usize(cx.tcx, cx.param_env).map_or(true, |u| u != 0)
|
|
&& self.is_interior_mutable_type(cx, inner_ty)
|
|
},
|
|
Tuple(fields) => fields.iter().any(|ty| self.is_interior_mutable_type(cx, ty)),
|
|
Adt(def, substs) => {
|
|
// Special case for collections in `std` who's impl of `Hash` or `Ord` delegates to
|
|
// that of their type parameters. Note: we don't include `HashSet` and `HashMap`
|
|
// because they have no impl for `Hash` or `Ord`.
|
|
let def_id = def.did();
|
|
let is_std_collection = [
|
|
sym::Option,
|
|
sym::Result,
|
|
sym::LinkedList,
|
|
sym::Vec,
|
|
sym::VecDeque,
|
|
sym::BTreeMap,
|
|
sym::BTreeSet,
|
|
sym::Rc,
|
|
sym::Arc,
|
|
]
|
|
.iter()
|
|
.any(|diag_item| cx.tcx.is_diagnostic_item(*diag_item, def_id));
|
|
let is_box = Some(def_id) == cx.tcx.lang_items().owned_box();
|
|
if is_std_collection || is_box || self.ignore_mut_def_ids.contains(&def_id) {
|
|
// The type is mutable if any of its type parameters are
|
|
substs.types().any(|ty| self.is_interior_mutable_type(cx, ty))
|
|
} else {
|
|
!ty.has_escaping_bound_vars()
|
|
&& cx.tcx.layout_of(cx.param_env.and(ty)).is_ok()
|
|
&& !ty.is_freeze(cx.tcx, cx.param_env)
|
|
}
|
|
},
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|