rust-clippy/clippy_lints/src/consts.rs
2019-01-05 01:12:33 +01:00

464 lines
19 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2014-2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(clippy::float_cmp)]
use crate::utils::{clip, sext, unsext};
use rustc::hir::def::Def;
use rustc::hir::*;
use rustc::lint::LateContext;
use rustc::ty::subst::{Subst, Substs};
use rustc::ty::{self, Instance, Ty, TyCtxt};
use rustc::{bug, span_bug};
use rustc_data_structures::sync::Lrc;
use std::cmp::Ordering::{self, Equal};
use std::cmp::PartialOrd;
use std::convert::TryInto;
use std::hash::{Hash, Hasher};
use syntax::ast::{FloatTy, LitKind};
use syntax::ptr::P;
/// A `LitKind`-like enum to fold constant `Expr`s into.
#[derive(Debug, Clone)]
pub enum Constant {
/// a String "abc"
Str(String),
/// a Binary String b"abc"
Binary(Lrc<Vec<u8>>),
/// a single char 'a'
Char(char),
/// an integer's bit representation
Int(u128),
/// an f32
F32(f32),
/// an f64
F64(f64),
/// true or false
Bool(bool),
/// an array of constants
Vec(Vec<Constant>),
/// also an array, but with only one constant, repeated N times
Repeat(Box<Constant>, u64),
/// a tuple of constants
Tuple(Vec<Constant>),
}
impl PartialEq for Constant {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(&Constant::Str(ref ls), &Constant::Str(ref rs)) => ls == rs,
(&Constant::Binary(ref l), &Constant::Binary(ref r)) => l == r,
(&Constant::Char(l), &Constant::Char(r)) => l == r,
(&Constant::Int(l), &Constant::Int(r)) => l == r,
(&Constant::F64(l), &Constant::F64(r)) => {
// we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have
// `Fw32 == Fw64` so dont compare them
// to_bits is required to catch non-matching 0.0, -0.0, and NaNs
l.to_bits() == r.to_bits()
},
(&Constant::F32(l), &Constant::F32(r)) => {
// we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have
// `Fw32 == Fw64` so dont compare them
// to_bits is required to catch non-matching 0.0, -0.0, and NaNs
f64::from(l).to_bits() == f64::from(r).to_bits()
},
(&Constant::Bool(l), &Constant::Bool(r)) => l == r,
(&Constant::Vec(ref l), &Constant::Vec(ref r)) | (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) => {
l == r
},
(&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => ls == rs && lv == rv,
_ => false, // TODO: Are there inter-type equalities?
}
}
}
impl Hash for Constant {
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
match *self {
Constant::Str(ref s) => {
s.hash(state);
},
Constant::Binary(ref b) => {
b.hash(state);
},
Constant::Char(c) => {
c.hash(state);
},
Constant::Int(i) => {
i.hash(state);
},
Constant::F32(f) => {
f64::from(f).to_bits().hash(state);
},
Constant::F64(f) => {
f.to_bits().hash(state);
},
Constant::Bool(b) => {
b.hash(state);
},
Constant::Vec(ref v) | Constant::Tuple(ref v) => {
v.hash(state);
},
Constant::Repeat(ref c, l) => {
c.hash(state);
l.hash(state);
},
}
}
}
impl Constant {
pub fn partial_cmp(tcx: TyCtxt<'_, '_, '_>, cmp_type: ty::Ty<'_>, left: &Self, right: &Self) -> Option<Ordering> {
match (left, right) {
(&Constant::Str(ref ls), &Constant::Str(ref rs)) => Some(ls.cmp(rs)),
(&Constant::Char(ref l), &Constant::Char(ref r)) => Some(l.cmp(r)),
(&Constant::Int(l), &Constant::Int(r)) => {
if let ty::Int(int_ty) = cmp_type.sty {
Some(sext(tcx, l, int_ty).cmp(&sext(tcx, r, int_ty)))
} else {
Some(l.cmp(&r))
}
},
(&Constant::F64(l), &Constant::F64(r)) => l.partial_cmp(&r),
(&Constant::F32(l), &Constant::F32(r)) => l.partial_cmp(&r),
(&Constant::Bool(ref l), &Constant::Bool(ref r)) => Some(l.cmp(r)),
(&Constant::Tuple(ref l), &Constant::Tuple(ref r)) | (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l
.iter()
.zip(r.iter())
.map(|(li, ri)| Self::partial_cmp(tcx, cmp_type, li, ri))
.find(|r| r.map_or(true, |o| o != Ordering::Equal))
.unwrap_or_else(|| Some(l.len().cmp(&r.len()))),
(&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => {
match Self::partial_cmp(tcx, cmp_type, lv, rv) {
Some(Equal) => Some(ls.cmp(rs)),
x => x,
}
},
_ => None, // TODO: Are there any useful inter-type orderings?
}
}
}
/// parse a `LitKind` to a `Constant`
pub fn lit_to_constant<'tcx>(lit: &LitKind, ty: Ty<'tcx>) -> Constant {
use syntax::ast::*;
match *lit {
LitKind::Str(ref is, _) => Constant::Str(is.to_string()),
LitKind::Byte(b) => Constant::Int(u128::from(b)),
LitKind::ByteStr(ref s) => Constant::Binary(Lrc::clone(s)),
LitKind::Char(c) => Constant::Char(c),
LitKind::Int(n, _) => Constant::Int(n),
LitKind::Float(ref is, _) | LitKind::FloatUnsuffixed(ref is) => match ty.sty {
ty::Float(FloatTy::F32) => Constant::F32(is.as_str().parse().unwrap()),
ty::Float(FloatTy::F64) => Constant::F64(is.as_str().parse().unwrap()),
_ => bug!(),
},
LitKind::Bool(b) => Constant::Bool(b),
}
}
pub fn constant<'c, 'cc>(
lcx: &LateContext<'c, 'cc>,
tables: &'c ty::TypeckTables<'cc>,
e: &Expr,
) -> Option<(Constant, bool)> {
let mut cx = ConstEvalLateContext {
tcx: lcx.tcx,
tables,
param_env: lcx.param_env,
needed_resolution: false,
substs: lcx.tcx.intern_substs(&[]),
};
cx.expr(e).map(|cst| (cst, cx.needed_resolution))
}
pub fn constant_simple<'c, 'cc>(
lcx: &LateContext<'c, 'cc>,
tables: &'c ty::TypeckTables<'cc>,
e: &Expr,
) -> Option<Constant> {
constant(lcx, tables, e).and_then(|(cst, res)| if res { None } else { Some(cst) })
}
/// Creates a `ConstEvalLateContext` from the given `LateContext` and `TypeckTables`
pub fn constant_context<'c, 'cc>(
lcx: &LateContext<'c, 'cc>,
tables: &'c ty::TypeckTables<'cc>,
) -> ConstEvalLateContext<'c, 'cc> {
ConstEvalLateContext {
tcx: lcx.tcx,
tables,
param_env: lcx.param_env,
needed_resolution: false,
substs: lcx.tcx.intern_substs(&[]),
}
}
pub struct ConstEvalLateContext<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
tables: &'a ty::TypeckTables<'tcx>,
param_env: ty::ParamEnv<'tcx>,
needed_resolution: bool,
substs: &'tcx Substs<'tcx>,
}
impl<'c, 'cc> ConstEvalLateContext<'c, 'cc> {
/// simple constant folding: Insert an expression, get a constant or none.
pub fn expr(&mut self, e: &Expr) -> Option<Constant> {
match e.node {
ExprKind::Path(ref qpath) => self.fetch_path(qpath, e.hir_id),
ExprKind::Block(ref block, _) => self.block(block),
ExprKind::If(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, otherwise),
ExprKind::Lit(ref lit) => Some(lit_to_constant(&lit.node, self.tables.expr_ty(e))),
ExprKind::Array(ref vec) => self.multi(vec).map(Constant::Vec),
ExprKind::Tup(ref tup) => self.multi(tup).map(Constant::Tuple),
ExprKind::Repeat(ref value, _) => {
let n = match self.tables.expr_ty(e).sty {
ty::Array(_, n) => n.assert_usize(self.tcx).expect("array length"),
_ => span_bug!(e.span, "typeck error"),
};
self.expr(value).map(|v| Constant::Repeat(Box::new(v), n))
},
ExprKind::Unary(op, ref operand) => self.expr(operand).and_then(|o| match op {
UnNot => self.constant_not(&o, self.tables.expr_ty(e)),
UnNeg => self.constant_negate(&o, self.tables.expr_ty(e)),
UnDeref => Some(o),
}),
ExprKind::Binary(op, ref left, ref right) => self.binop(op, left, right),
// TODO: add other expressions
_ => None,
}
}
#[allow(clippy::cast_possible_wrap)]
fn constant_not(&self, o: &Constant, ty: ty::Ty<'_>) -> Option<Constant> {
use self::Constant::*;
match *o {
Bool(b) => Some(Bool(!b)),
Int(value) => {
let value = !value;
match ty.sty {
ty::Int(ity) => Some(Int(unsext(self.tcx, value as i128, ity))),
ty::Uint(ity) => Some(Int(clip(self.tcx, value, ity))),
_ => None,
}
},
_ => None,
}
}
fn constant_negate(&self, o: &Constant, ty: ty::Ty<'_>) -> Option<Constant> {
use self::Constant::*;
match *o {
Int(value) => {
let ity = match ty.sty {
ty::Int(ity) => ity,
_ => return None,
};
// sign extend
let value = sext(self.tcx, value, ity);
let value = value.checked_neg()?;
// clear unused bits
Some(Int(unsext(self.tcx, value, ity)))
},
F32(f) => Some(F32(-f)),
F64(f) => Some(F64(-f)),
_ => None,
}
}
/// create `Some(Vec![..])` of all constants, unless there is any
/// non-constant part
fn multi(&mut self, vec: &[Expr]) -> Option<Vec<Constant>> {
vec.iter().map(|elem| self.expr(elem)).collect::<Option<_>>()
}
/// lookup a possibly constant expression from a ExprKind::Path
fn fetch_path(&mut self, qpath: &QPath, id: HirId) -> Option<Constant> {
use rustc::mir::interpret::GlobalId;
let def = self.tables.qpath_def(qpath, id);
match def {
Def::Const(def_id) | Def::AssociatedConst(def_id) => {
let substs = self.tables.node_substs(id);
let substs = if self.substs.is_empty() {
substs
} else {
substs.subst(self.tcx, self.substs)
};
let instance = Instance::resolve(self.tcx, self.param_env, def_id, substs)?;
let gid = GlobalId {
instance,
promoted: None,
};
let result = self.tcx.const_eval(self.param_env.and(gid)).ok()?;
let ret = miri_to_const(self.tcx, &result);
if ret.is_some() {
self.needed_resolution = true;
}
return ret;
},
_ => {},
}
None
}
/// A block can only yield a constant if it only has one constant expression
fn block(&mut self, block: &Block) -> Option<Constant> {
if block.stmts.is_empty() {
block.expr.as_ref().and_then(|b| self.expr(b))
} else {
None
}
}
fn ifthenelse(&mut self, cond: &Expr, then: &P<Expr>, otherwise: &Option<P<Expr>>) -> Option<Constant> {
if let Some(Constant::Bool(b)) = self.expr(cond) {
if b {
self.expr(&**then)
} else {
otherwise.as_ref().and_then(|expr| self.expr(expr))
}
} else {
None
}
}
fn binop(&mut self, op: BinOp, left: &Expr, right: &Expr) -> Option<Constant> {
let l = self.expr(left)?;
let r = self.expr(right);
match (l, r) {
(Constant::Int(l), Some(Constant::Int(r))) => match self.tables.expr_ty(left).sty {
ty::Int(ity) => {
let l = sext(self.tcx, l, ity);
let r = sext(self.tcx, r, ity);
let zext = |n: i128| Constant::Int(unsext(self.tcx, n, ity));
match op.node {
BinOpKind::Add => l.checked_add(r).map(zext),
BinOpKind::Sub => l.checked_sub(r).map(zext),
BinOpKind::Mul => l.checked_mul(r).map(zext),
BinOpKind::Div if r != 0 => l.checked_div(r).map(zext),
BinOpKind::Rem if r != 0 => l.checked_rem(r).map(zext),
BinOpKind::Shr => l.checked_shr(r.try_into().expect("invalid shift")).map(zext),
BinOpKind::Shl => l.checked_shl(r.try_into().expect("invalid shift")).map(zext),
BinOpKind::BitXor => Some(zext(l ^ r)),
BinOpKind::BitOr => Some(zext(l | r)),
BinOpKind::BitAnd => Some(zext(l & r)),
BinOpKind::Eq => Some(Constant::Bool(l == r)),
BinOpKind::Ne => Some(Constant::Bool(l != r)),
BinOpKind::Lt => Some(Constant::Bool(l < r)),
BinOpKind::Le => Some(Constant::Bool(l <= r)),
BinOpKind::Ge => Some(Constant::Bool(l >= r)),
BinOpKind::Gt => Some(Constant::Bool(l > r)),
_ => None,
}
},
ty::Uint(_) => match op.node {
BinOpKind::Add => l.checked_add(r).map(Constant::Int),
BinOpKind::Sub => l.checked_sub(r).map(Constant::Int),
BinOpKind::Mul => l.checked_mul(r).map(Constant::Int),
BinOpKind::Div => l.checked_div(r).map(Constant::Int),
BinOpKind::Rem => l.checked_rem(r).map(Constant::Int),
BinOpKind::Shr => l.checked_shr(r.try_into().expect("shift too large")).map(Constant::Int),
BinOpKind::Shl => l.checked_shl(r.try_into().expect("shift too large")).map(Constant::Int),
BinOpKind::BitXor => Some(Constant::Int(l ^ r)),
BinOpKind::BitOr => Some(Constant::Int(l | r)),
BinOpKind::BitAnd => Some(Constant::Int(l & r)),
BinOpKind::Eq => Some(Constant::Bool(l == r)),
BinOpKind::Ne => Some(Constant::Bool(l != r)),
BinOpKind::Lt => Some(Constant::Bool(l < r)),
BinOpKind::Le => Some(Constant::Bool(l <= r)),
BinOpKind::Ge => Some(Constant::Bool(l >= r)),
BinOpKind::Gt => Some(Constant::Bool(l > r)),
_ => None,
},
_ => None,
},
(Constant::F32(l), Some(Constant::F32(r))) => match op.node {
BinOpKind::Add => Some(Constant::F32(l + r)),
BinOpKind::Sub => Some(Constant::F32(l - r)),
BinOpKind::Mul => Some(Constant::F32(l * r)),
BinOpKind::Div => Some(Constant::F32(l / r)),
BinOpKind::Rem => Some(Constant::F32(l % r)),
BinOpKind::Eq => Some(Constant::Bool(l == r)),
BinOpKind::Ne => Some(Constant::Bool(l != r)),
BinOpKind::Lt => Some(Constant::Bool(l < r)),
BinOpKind::Le => Some(Constant::Bool(l <= r)),
BinOpKind::Ge => Some(Constant::Bool(l >= r)),
BinOpKind::Gt => Some(Constant::Bool(l > r)),
_ => None,
},
(Constant::F64(l), Some(Constant::F64(r))) => match op.node {
BinOpKind::Add => Some(Constant::F64(l + r)),
BinOpKind::Sub => Some(Constant::F64(l - r)),
BinOpKind::Mul => Some(Constant::F64(l * r)),
BinOpKind::Div => Some(Constant::F64(l / r)),
BinOpKind::Rem => Some(Constant::F64(l % r)),
BinOpKind::Eq => Some(Constant::Bool(l == r)),
BinOpKind::Ne => Some(Constant::Bool(l != r)),
BinOpKind::Lt => Some(Constant::Bool(l < r)),
BinOpKind::Le => Some(Constant::Bool(l <= r)),
BinOpKind::Ge => Some(Constant::Bool(l >= r)),
BinOpKind::Gt => Some(Constant::Bool(l > r)),
_ => None,
},
(l, r) => match (op.node, l, r) {
(BinOpKind::And, Constant::Bool(false), _) => Some(Constant::Bool(false)),
(BinOpKind::Or, Constant::Bool(true), _) => Some(Constant::Bool(true)),
(BinOpKind::And, Constant::Bool(true), Some(r)) | (BinOpKind::Or, Constant::Bool(false), Some(r)) => {
Some(r)
},
(BinOpKind::BitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)),
(BinOpKind::BitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)),
(BinOpKind::BitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)),
_ => None,
},
}
}
}
pub fn miri_to_const<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, result: &ty::Const<'tcx>) -> Option<Constant> {
use rustc::mir::interpret::{ConstValue, Scalar};
match result.val {
ConstValue::Scalar(Scalar::Bits { bits: b, .. }) => match result.ty.sty {
ty::Bool => Some(Constant::Bool(b == 1)),
ty::Uint(_) | ty::Int(_) => Some(Constant::Int(b)),
ty::Float(FloatTy::F32) => Some(Constant::F32(f32::from_bits(
b.try_into().expect("invalid f32 bit representation"),
))),
ty::Float(FloatTy::F64) => Some(Constant::F64(f64::from_bits(
b.try_into().expect("invalid f64 bit representation"),
))),
// FIXME: implement other conversion
_ => None,
},
ConstValue::ScalarPair(Scalar::Ptr(ptr), Scalar::Bits { bits: n, .. }) => match result.ty.sty {
ty::Ref(_, tam, _) => match tam.sty {
ty::Str => {
let alloc = tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
let offset = ptr.offset.bytes().try_into().expect("too-large pointer offset");
let n = n as usize;
String::from_utf8(alloc.bytes[offset..(offset + n)].to_owned())
.ok()
.map(Constant::Str)
},
_ => None,
},
_ => None,
},
// FIXME: implement other conversions
_ => None,
}
}