rust-clippy/clippy_lints/src/infinite_iter.rs
2021-08-15 16:18:26 -03:00

258 lines
8.3 KiB
Rust

use clippy_utils::diagnostics::span_lint;
use clippy_utils::ty::{implements_trait, is_type_diagnostic_item};
use clippy_utils::{get_trait_def_id, higher, is_qpath_def_path, paths};
use rustc_hir::{BorrowKind, Expr, ExprKind};
use rustc_lint::{LateContext, LateLintPass};
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::symbol::{sym, Symbol};
declare_clippy_lint! {
/// ### What it does
/// Checks for iteration that is guaranteed to be infinite.
///
/// ### Why is this bad?
/// While there may be places where this is acceptable
/// (e.g., in event streams), in most cases this is simply an error.
///
/// ### Example
/// ```no_run
/// use std::iter;
///
/// iter::repeat(1_u8).collect::<Vec<_>>();
/// ```
pub INFINITE_ITER,
correctness,
"infinite iteration"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for iteration that may be infinite.
///
/// ### Why is this bad?
/// While there may be places where this is acceptable
/// (e.g., in event streams), in most cases this is simply an error.
///
/// ### Known problems
/// The code may have a condition to stop iteration, but
/// this lint is not clever enough to analyze it.
///
/// ### Example
/// ```rust
/// let infinite_iter = 0..;
/// [0..].iter().zip(infinite_iter.take_while(|x| *x > 5));
/// ```
pub MAYBE_INFINITE_ITER,
pedantic,
"possible infinite iteration"
}
declare_lint_pass!(InfiniteIter => [INFINITE_ITER, MAYBE_INFINITE_ITER]);
impl<'tcx> LateLintPass<'tcx> for InfiniteIter {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
let (lint, msg) = match complete_infinite_iter(cx, expr) {
Infinite => (INFINITE_ITER, "infinite iteration detected"),
MaybeInfinite => (MAYBE_INFINITE_ITER, "possible infinite iteration detected"),
Finite => {
return;
},
};
span_lint(cx, lint, expr.span, msg);
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum Finiteness {
Infinite,
MaybeInfinite,
Finite,
}
use self::Finiteness::{Finite, Infinite, MaybeInfinite};
impl Finiteness {
#[must_use]
fn and(self, b: Self) -> Self {
match (self, b) {
(Finite, _) | (_, Finite) => Finite,
(MaybeInfinite, _) | (_, MaybeInfinite) => MaybeInfinite,
_ => Infinite,
}
}
#[must_use]
fn or(self, b: Self) -> Self {
match (self, b) {
(Infinite, _) | (_, Infinite) => Infinite,
(MaybeInfinite, _) | (_, MaybeInfinite) => MaybeInfinite,
_ => Finite,
}
}
}
impl From<bool> for Finiteness {
#[must_use]
fn from(b: bool) -> Self {
if b { Infinite } else { Finite }
}
}
/// This tells us what to look for to know if the iterator returned by
/// this method is infinite
#[derive(Copy, Clone)]
enum Heuristic {
/// infinite no matter what
Always,
/// infinite if the first argument is
First,
/// infinite if any of the supplied arguments is
Any,
/// infinite if all of the supplied arguments are
All,
}
use self::Heuristic::{All, Always, Any, First};
/// a slice of (method name, number of args, heuristic, bounds) tuples
/// that will be used to determine whether the method in question
/// returns an infinite or possibly infinite iterator. The finiteness
/// is an upper bound, e.g., some methods can return a possibly
/// infinite iterator at worst, e.g., `take_while`.
const HEURISTICS: [(&str, usize, Heuristic, Finiteness); 19] = [
("zip", 2, All, Infinite),
("chain", 2, Any, Infinite),
("cycle", 1, Always, Infinite),
("map", 2, First, Infinite),
("by_ref", 1, First, Infinite),
("cloned", 1, First, Infinite),
("rev", 1, First, Infinite),
("inspect", 1, First, Infinite),
("enumerate", 1, First, Infinite),
("peekable", 2, First, Infinite),
("fuse", 1, First, Infinite),
("skip", 2, First, Infinite),
("skip_while", 1, First, Infinite),
("filter", 2, First, Infinite),
("filter_map", 2, First, Infinite),
("flat_map", 2, First, Infinite),
("unzip", 1, First, Infinite),
("take_while", 2, First, MaybeInfinite),
("scan", 3, First, MaybeInfinite),
];
fn is_infinite(cx: &LateContext<'_>, expr: &Expr<'_>) -> Finiteness {
match expr.kind {
ExprKind::MethodCall(method, _, args, _) => {
for &(name, len, heuristic, cap) in &HEURISTICS {
if method.ident.name.as_str() == name && args.len() == len {
return (match heuristic {
Always => Infinite,
First => is_infinite(cx, &args[0]),
Any => is_infinite(cx, &args[0]).or(is_infinite(cx, &args[1])),
All => is_infinite(cx, &args[0]).and(is_infinite(cx, &args[1])),
})
.and(cap);
}
}
if method.ident.name == sym!(flat_map) && args.len() == 2 {
if let ExprKind::Closure(_, _, body_id, _, _) = args[1].kind {
let body = cx.tcx.hir().body(body_id);
return is_infinite(cx, &body.value);
}
}
Finite
},
ExprKind::Block(block, _) => block.expr.as_ref().map_or(Finite, |e| is_infinite(cx, e)),
ExprKind::Box(e) | ExprKind::AddrOf(BorrowKind::Ref, _, e) => is_infinite(cx, e),
ExprKind::Call(path, _) => {
if let ExprKind::Path(ref qpath) = path.kind {
is_qpath_def_path(cx, qpath, path.hir_id, &paths::ITER_REPEAT).into()
} else {
Finite
}
},
ExprKind::Struct(..) => higher::Range::hir(expr).map_or(false, |r| r.end.is_none()).into(),
_ => Finite,
}
}
/// the names and argument lengths of methods that *may* exhaust their
/// iterators
const POSSIBLY_COMPLETING_METHODS: [(&str, usize); 6] = [
("find", 2),
("rfind", 2),
("position", 2),
("rposition", 2),
("any", 2),
("all", 2),
];
/// the names and argument lengths of methods that *always* exhaust
/// their iterators
const COMPLETING_METHODS: [(&str, usize); 12] = [
("count", 1),
("fold", 3),
("for_each", 2),
("partition", 2),
("max", 1),
("max_by", 2),
("max_by_key", 2),
("min", 1),
("min_by", 2),
("min_by_key", 2),
("sum", 1),
("product", 1),
];
/// the paths of types that are known to be infinitely allocating
const INFINITE_COLLECTORS: &[Symbol] = &[
sym::BinaryHeap,
sym::BTreeMap,
sym::BTreeSet,
sym::hashmap_type,
sym::hashset_type,
sym::LinkedList,
sym::vec_type,
sym::vecdeque_type,
];
fn complete_infinite_iter(cx: &LateContext<'_>, expr: &Expr<'_>) -> Finiteness {
match expr.kind {
ExprKind::MethodCall(method, _, args, _) => {
for &(name, len) in &COMPLETING_METHODS {
if method.ident.name.as_str() == name && args.len() == len {
return is_infinite(cx, &args[0]);
}
}
for &(name, len) in &POSSIBLY_COMPLETING_METHODS {
if method.ident.name.as_str() == name && args.len() == len {
return MaybeInfinite.and(is_infinite(cx, &args[0]));
}
}
if method.ident.name == sym!(last) && args.len() == 1 {
let not_double_ended = get_trait_def_id(cx, &paths::DOUBLE_ENDED_ITERATOR).map_or(false, |id| {
!implements_trait(cx, cx.typeck_results().expr_ty(&args[0]), id, &[])
});
if not_double_ended {
return is_infinite(cx, &args[0]);
}
} else if method.ident.name == sym!(collect) {
let ty = cx.typeck_results().expr_ty(expr);
if INFINITE_COLLECTORS
.iter()
.any(|diag_item| is_type_diagnostic_item(cx, ty, *diag_item))
{
return is_infinite(cx, &args[0]);
}
}
},
ExprKind::Binary(op, l, r) => {
if op.node.is_comparison() {
return is_infinite(cx, l).and(is_infinite(cx, r)).and(MaybeInfinite);
}
}, // TODO: ExprKind::Loop + Match
_ => (),
}
Finite
}