rust-clippy/clippy_lints/src/use_self.rs

359 lines
13 KiB
Rust

use clippy_config::msrvs::{self, Msrv};
use clippy_utils::diagnostics::span_lint_and_sugg;
use clippy_utils::is_from_proc_macro;
use clippy_utils::ty::same_type_and_consts;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::Applicability;
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_hir::intravisit::{walk_inf, walk_ty, Visitor};
use rustc_hir::{
self as hir, Expr, ExprKind, FnRetTy, FnSig, GenericArgsParentheses, GenericParam, GenericParamKind, HirId, Impl,
ImplItemKind, Item, ItemKind, Pat, PatKind, Path, QPath, Ty, TyKind,
};
use rustc_hir_analysis::lower_ty;
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::ty::Ty as MiddleTy;
use rustc_session::impl_lint_pass;
use rustc_span::Span;
declare_clippy_lint! {
/// ### What it does
/// Checks for unnecessary repetition of structure name when a
/// replacement with `Self` is applicable.
///
/// ### Why is this bad?
/// Unnecessary repetition. Mixed use of `Self` and struct
/// name
/// feels inconsistent.
///
/// ### Known problems
/// - Unaddressed false negative in fn bodies of trait implementations
///
/// ### Example
/// ```no_run
/// struct Foo;
/// impl Foo {
/// fn new() -> Foo {
/// Foo {}
/// }
/// }
/// ```
/// could be
/// ```no_run
/// struct Foo;
/// impl Foo {
/// fn new() -> Self {
/// Self {}
/// }
/// }
/// ```
#[clippy::version = "pre 1.29.0"]
pub USE_SELF,
nursery,
"unnecessary structure name repetition whereas `Self` is applicable"
}
pub struct UseSelf {
msrv: Msrv,
stack: Vec<StackItem>,
}
impl UseSelf {
#[must_use]
pub fn new(msrv: Msrv) -> Self {
Self {
msrv,
stack: Vec::new(),
}
}
}
#[derive(Debug)]
enum StackItem {
Check {
impl_id: LocalDefId,
in_body: u32,
types_to_skip: FxHashSet<HirId>,
},
NoCheck,
}
impl_lint_pass!(UseSelf => [USE_SELF]);
const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
impl<'tcx> LateLintPass<'tcx> for UseSelf {
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &Item<'tcx>) {
if matches!(item.kind, ItemKind::OpaqueTy(_)) {
// skip over `ItemKind::OpaqueTy` in order to lint `foo() -> impl <..>`
return;
}
// We push the self types of `impl`s on a stack here. Only the top type on the stack is
// relevant for linting, since this is the self type of the `impl` we're currently in. To
// avoid linting on nested items, we push `StackItem::NoCheck` on the stack to signal, that
// we're in an `impl` or nested item, that we don't want to lint
let stack_item = if let ItemKind::Impl(Impl { self_ty, generics, .. }) = item.kind
&& let TyKind::Path(QPath::Resolved(_, item_path)) = self_ty.kind
&& let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args
&& parameters
.as_ref()
.map_or(true, |params| params.parenthesized == GenericArgsParentheses::No)
&& !item.span.from_expansion()
&& !is_from_proc_macro(cx, item)
// expensive, should be last check
{
// Self cannot be used inside const generic parameters
let types_to_skip = generics
.params
.iter()
.filter_map(|param| match param {
GenericParam {
kind:
GenericParamKind::Const {
ty: Ty { hir_id, .. }, ..
},
..
} => Some(*hir_id),
_ => None,
})
.chain(std::iter::once(self_ty.hir_id))
.collect();
StackItem::Check {
impl_id: item.owner_id.def_id,
in_body: 0,
types_to_skip,
}
} else {
StackItem::NoCheck
};
self.stack.push(stack_item);
}
fn check_item_post(&mut self, _: &LateContext<'_>, item: &Item<'_>) {
if !matches!(item.kind, ItemKind::OpaqueTy(_)) {
self.stack.pop();
}
}
fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
// We want to skip types in trait `impl`s that aren't declared as `Self` in the trait
// declaration. The collection of those types is all this method implementation does.
if let ImplItemKind::Fn(FnSig { decl, .. }, ..) = impl_item.kind
&& let Some(&mut StackItem::Check {
impl_id,
ref mut types_to_skip,
..
}) = self.stack.last_mut()
&& let Some(impl_trait_ref) = cx.tcx.impl_trait_ref(impl_id)
{
// `self_ty` is the semantic self type of `impl <trait> for <type>`. This cannot be
// `Self`.
let self_ty = impl_trait_ref.instantiate_identity().self_ty();
// `trait_method_sig` is the signature of the function, how it is declared in the
// trait, not in the impl of the trait.
let trait_method = cx
.tcx
.associated_item(impl_item.owner_id)
.trait_item_def_id
.expect("impl method matches a trait method");
let trait_method_sig = cx.tcx.fn_sig(trait_method).instantiate_identity();
let trait_method_sig = cx.tcx.instantiate_bound_regions_with_erased(trait_method_sig);
// `impl_inputs_outputs` is an iterator over the types (`hir::Ty`) declared in the
// implementation of the trait.
let output_hir_ty = if let FnRetTy::Return(ty) = &decl.output {
Some(&**ty)
} else {
None
};
let impl_inputs_outputs = decl.inputs.iter().chain(output_hir_ty);
// `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature.
//
// `trait_sem_ty` (of type `ty::Ty`) is the semantic type for the signature in the
// trait declaration. This is used to check if `Self` was used in the trait
// declaration.
//
// If `any`where in the `trait_sem_ty` the `self_ty` was used verbatim (as opposed
// to `Self`), we want to skip linting that type and all subtypes of it. This
// avoids suggestions to e.g. replace `Vec<u8>` with `Vec<Self>`, in an `impl Trait
// for u8`, when the trait always uses `Vec<u8>`.
//
// See also https://github.com/rust-lang/rust-clippy/issues/2894.
for (impl_hir_ty, trait_sem_ty) in impl_inputs_outputs.zip(trait_method_sig.inputs_and_output) {
if trait_sem_ty.walk().any(|inner| inner == self_ty.into()) {
let mut visitor = SkipTyCollector::default();
visitor.visit_ty(impl_hir_ty);
types_to_skip.extend(visitor.types_to_skip);
}
}
}
}
fn check_body(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
// `lower_ty` cannot be called in `Body`s or it will panic (sometimes). But in bodies
// we can use `cx.typeck_results.node_type(..)` to get the `ty::Ty` from a `hir::Ty`.
// However the `node_type()` method can *only* be called in bodies.
if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
*in_body = in_body.saturating_add(1);
}
}
fn check_body_post(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
*in_body = in_body.saturating_sub(1);
}
}
fn check_ty(&mut self, cx: &LateContext<'tcx>, hir_ty: &Ty<'tcx>) {
if !hir_ty.span.from_expansion()
&& self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS)
&& let Some(&StackItem::Check {
impl_id,
in_body,
ref types_to_skip,
}) = self.stack.last()
&& let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind
&& !matches!(
path.res,
Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::Def(DefKind::TyParam, _)
)
&& !types_to_skip.contains(&hir_ty.hir_id)
&& let ty = if in_body > 0 {
cx.typeck_results().node_type(hir_ty.hir_id)
} else {
lower_ty(cx.tcx, hir_ty)
}
&& let impl_ty = cx.tcx.type_of(impl_id).instantiate_identity()
&& same_type_and_consts(ty, impl_ty)
// Ensure the type we encounter and the one from the impl have the same lifetime parameters. It may be that
// the lifetime parameters of `ty` are ellided (`impl<'a> Foo<'a> { fn new() -> Self { Foo{..} } }`, in
// which case we must still trigger the lint.
&& (has_no_lifetime(ty) || same_lifetimes(ty, impl_ty))
{
span_lint(cx, hir_ty.span);
}
}
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
if !expr.span.from_expansion()
&& self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS)
&& let Some(&StackItem::Check { impl_id, .. }) = self.stack.last()
&& cx.typeck_results().expr_ty(expr) == cx.tcx.type_of(impl_id).instantiate_identity()
{
} else {
return;
}
match expr.kind {
ExprKind::Struct(QPath::Resolved(_, path), ..) => check_path(cx, path),
ExprKind::Call(fun, _) => {
if let ExprKind::Path(QPath::Resolved(_, path)) = fun.kind {
check_path(cx, path);
}
},
ExprKind::Path(QPath::Resolved(_, path)) => check_path(cx, path),
_ => (),
}
}
fn check_pat(&mut self, cx: &LateContext<'_>, pat: &Pat<'_>) {
if !pat.span.from_expansion()
&& self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS)
&& let Some(&StackItem::Check { impl_id, .. }) = self.stack.last()
// get the path from the pattern
&& let PatKind::Path(QPath::Resolved(_, path))
| PatKind::TupleStruct(QPath::Resolved(_, path), _, _)
| PatKind::Struct(QPath::Resolved(_, path), _, _) = pat.kind
&& cx.typeck_results().pat_ty(pat) == cx.tcx.type_of(impl_id).instantiate_identity()
{
check_path(cx, path);
}
}
extract_msrv_attr!(LateContext);
}
#[derive(Default)]
struct SkipTyCollector {
types_to_skip: Vec<HirId>,
}
impl<'tcx> Visitor<'tcx> for SkipTyCollector {
fn visit_infer(&mut self, inf: &hir::InferArg) {
self.types_to_skip.push(inf.hir_id);
walk_inf(self, inf);
}
fn visit_ty(&mut self, hir_ty: &Ty<'_>) {
self.types_to_skip.push(hir_ty.hir_id);
walk_ty(self, hir_ty);
}
}
fn span_lint(cx: &LateContext<'_>, span: Span) {
span_lint_and_sugg(
cx,
USE_SELF,
span,
"unnecessary structure name repetition",
"use the applicable keyword",
"Self".to_owned(),
Applicability::MachineApplicable,
);
}
fn check_path(cx: &LateContext<'_>, path: &Path<'_>) {
match path.res {
Res::Def(DefKind::Ctor(CtorOf::Variant, _) | DefKind::Variant, ..) => {
lint_path_to_variant(cx, path);
},
Res::Def(DefKind::Ctor(CtorOf::Struct, _) | DefKind::Struct, ..) => span_lint(cx, path.span),
_ => (),
}
}
fn lint_path_to_variant(cx: &LateContext<'_>, path: &Path<'_>) {
if let [.., self_seg, _variant] = path.segments {
let span = path
.span
.with_hi(self_seg.args().span_ext().unwrap_or(self_seg.ident.span).hi());
span_lint(cx, span);
}
}
/// Returns `true` if types `a` and `b` have the same lifetime parameters, otherwise returns
/// `false`.
///
/// This function does not check that types `a` and `b` are the same types.
fn same_lifetimes<'tcx>(a: MiddleTy<'tcx>, b: MiddleTy<'tcx>) -> bool {
use rustc_middle::ty::{Adt, GenericArgKind};
match (&a.kind(), &b.kind()) {
(&Adt(_, args_a), &Adt(_, args_b)) => {
args_a
.iter()
.zip(args_b.iter())
.all(|(arg_a, arg_b)| match (arg_a.unpack(), arg_b.unpack()) {
// TODO: Handle inferred lifetimes
(GenericArgKind::Lifetime(inner_a), GenericArgKind::Lifetime(inner_b)) => inner_a == inner_b,
(GenericArgKind::Type(type_a), GenericArgKind::Type(type_b)) => same_lifetimes(type_a, type_b),
_ => true,
})
},
_ => a == b,
}
}
/// Returns `true` if `ty` has no lifetime parameter, otherwise returns `false`.
fn has_no_lifetime(ty: MiddleTy<'_>) -> bool {
use rustc_middle::ty::{Adt, GenericArgKind};
match ty.kind() {
&Adt(_, args) => !args
.iter()
// TODO: Handle inferred lifetimes
.any(|arg| matches!(arg.unpack(), GenericArgKind::Lifetime(..))),
_ => true,
}
}