rust-clippy/clippy_lints/src/identity_op.rs

169 lines
6.3 KiB
Rust

use clippy_utils::consts::{constant_full_int, constant_simple, Constant, FullInt};
use clippy_utils::diagnostics::span_lint_and_sugg;
use clippy_utils::source::snippet_with_applicability;
use clippy_utils::{clip, unsext};
use rustc_errors::Applicability;
use rustc_hir::{BinOp, BinOpKind, Expr, ExprKind, Node};
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::ty;
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::source_map::Span;
declare_clippy_lint! {
/// ### What it does
/// Checks for identity operations, e.g., `x + 0`.
///
/// ### Why is this bad?
/// This code can be removed without changing the
/// meaning. So it just obscures what's going on. Delete it mercilessly.
///
/// ### Example
/// ```rust
/// # let x = 1;
/// x / 1 + 0 * 1 - 0 | 0;
/// ```
#[clippy::version = "pre 1.29.0"]
pub IDENTITY_OP,
complexity,
"using identity operations, e.g., `x + 0` or `y / 1`"
}
declare_lint_pass!(IdentityOp => [IDENTITY_OP]);
impl<'tcx> LateLintPass<'tcx> for IdentityOp {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if expr.span.from_expansion() {
return;
}
if let ExprKind::Binary(cmp, left, right) = &expr.kind {
if !is_allowed(cx, *cmp, left, right) {
match cmp.node {
BinOpKind::Add | BinOpKind::BitOr | BinOpKind::BitXor => {
check(cx, left, 0, expr.span, right.span, needs_parenthesis(cx, expr, right));
check(cx, right, 0, expr.span, left.span, Parens::Unneeded);
},
BinOpKind::Shl | BinOpKind::Shr | BinOpKind::Sub => {
check(cx, right, 0, expr.span, left.span, Parens::Unneeded);
},
BinOpKind::Mul => {
check(cx, left, 1, expr.span, right.span, needs_parenthesis(cx, expr, right));
check(cx, right, 1, expr.span, left.span, Parens::Unneeded);
},
BinOpKind::Div => check(cx, right, 1, expr.span, left.span, Parens::Unneeded),
BinOpKind::BitAnd => {
check(cx, left, -1, expr.span, right.span, needs_parenthesis(cx, expr, right));
check(cx, right, -1, expr.span, left.span, Parens::Unneeded);
},
BinOpKind::Rem => check_remainder(cx, left, right, expr.span, left.span),
_ => (),
}
}
}
}
}
#[derive(Copy, Clone)]
enum Parens {
Needed,
Unneeded,
}
/// Checks if `left op right` needs parenthesis when reduced to `right`
/// e.g. `0 + if b { 1 } else { 2 } + if b { 3 } else { 4 }` cannot be reduced
/// to `if b { 1 } else { 2 } + if b { 3 } else { 4 }` where the `if` could be
/// interpreted as a statement
///
/// See #8724
fn needs_parenthesis(cx: &LateContext<'_>, binary: &Expr<'_>, right: &Expr<'_>) -> Parens {
match right.kind {
ExprKind::Binary(_, lhs, _) | ExprKind::Cast(lhs, _) => {
// ensure we're checking against the leftmost expression of `right`
//
// ~~~ `lhs`
// 0 + {4} * 2
// ~~~~~~~ `right`
return needs_parenthesis(cx, binary, lhs);
},
ExprKind::If(..) | ExprKind::Match(..) | ExprKind::Block(..) | ExprKind::Loop(..) => {},
_ => return Parens::Unneeded,
}
let mut prev_id = binary.hir_id;
for (_, node) in cx.tcx.hir().parent_iter(binary.hir_id) {
if let Node::Expr(expr) = node
&& let ExprKind::Binary(_, lhs, _) | ExprKind::Cast(lhs, _) = expr.kind
&& lhs.hir_id == prev_id
{
// keep going until we find a node that encompasses left of `binary`
prev_id = expr.hir_id;
continue;
}
match node {
Node::Block(_) | Node::Stmt(_) => break,
_ => return Parens::Unneeded,
};
}
Parens::Needed
}
fn is_allowed(cx: &LateContext<'_>, cmp: BinOp, left: &Expr<'_>, right: &Expr<'_>) -> bool {
// This lint applies to integers
!cx.typeck_results().expr_ty(left).peel_refs().is_integral()
|| !cx.typeck_results().expr_ty(right).peel_refs().is_integral()
// `1 << 0` is a common pattern in bit manipulation code
|| (cmp.node == BinOpKind::Shl
&& constant_simple(cx, cx.typeck_results(), right) == Some(Constant::Int(0))
&& constant_simple(cx, cx.typeck_results(), left) == Some(Constant::Int(1)))
}
fn check_remainder(cx: &LateContext<'_>, left: &Expr<'_>, right: &Expr<'_>, span: Span, arg: Span) {
let lhs_const = constant_full_int(cx, cx.typeck_results(), left);
let rhs_const = constant_full_int(cx, cx.typeck_results(), right);
if match (lhs_const, rhs_const) {
(Some(FullInt::S(lv)), Some(FullInt::S(rv))) => lv.abs() < rv.abs(),
(Some(FullInt::U(lv)), Some(FullInt::U(rv))) => lv < rv,
_ => return,
} {
span_ineffective_operation(cx, span, arg, Parens::Unneeded);
}
}
fn check(cx: &LateContext<'_>, e: &Expr<'_>, m: i8, span: Span, arg: Span, parens: Parens) {
if let Some(Constant::Int(v)) = constant_simple(cx, cx.typeck_results(), e).map(Constant::peel_refs) {
let check = match *cx.typeck_results().expr_ty(e).peel_refs().kind() {
ty::Int(ity) => unsext(cx.tcx, -1_i128, ity),
ty::Uint(uty) => clip(cx.tcx, !0, uty),
_ => return,
};
if match m {
0 => v == 0,
-1 => v == check,
1 => v == 1,
_ => unreachable!(),
} {
span_ineffective_operation(cx, span, arg, parens);
}
}
}
fn span_ineffective_operation(cx: &LateContext<'_>, span: Span, arg: Span, parens: Parens) {
let mut applicability = Applicability::MachineApplicable;
let expr_snippet = snippet_with_applicability(cx, arg, "..", &mut applicability);
let suggestion = match parens {
Parens::Needed => format!("({expr_snippet})"),
Parens::Unneeded => expr_snippet.into_owned(),
};
span_lint_and_sugg(
cx,
IDENTITY_OP,
span,
"this operation has no effect",
"consider reducing it to",
suggestion,
applicability,
);
}