use matches::matches; use rustc::hir::intravisit; use rustc::hir; use rustc::lint::*; use rustc::{declare_lint, lint_array}; use rustc::ty; use rustc::hir::def::Def; use std::collections::HashSet; use syntax::ast; use rustc_target::spec::abi::Abi; use syntax::codemap::Span; use crate::utils::{iter_input_pats, span_lint, type_is_unsafe_function}; /// **What it does:** Checks for functions with too many parameters. /// /// **Why is this bad?** Functions with lots of parameters are considered bad /// style and reduce readability (“what does the 5th parameter mean?”). Consider /// grouping some parameters into a new type. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// fn foo(x: u32, y: u32, name: &str, c: Color, w: f32, h: f32, a: f32, b: /// f32) { .. } /// ``` declare_clippy_lint! { pub TOO_MANY_ARGUMENTS, complexity, "functions with too many arguments" } /// **What it does:** Checks for public functions that dereferences raw pointer /// arguments but are not marked unsafe. /// /// **Why is this bad?** The function should probably be marked `unsafe`, since /// for an arbitrary raw pointer, there is no way of telling for sure if it is /// valid. /// /// **Known problems:** /// /// * It does not check functions recursively so if the pointer is passed to a /// private non-`unsafe` function which does the dereferencing, the lint won't /// trigger. /// * It only checks for arguments whose type are raw pointers, not raw pointers /// got from an argument in some other way (`fn foo(bar: &[*const u8])` or /// `some_argument.get_raw_ptr()`). /// /// **Example:** /// ```rust /// pub fn foo(x: *const u8) { println!("{}", unsafe { *x }); } /// ``` declare_clippy_lint! { pub NOT_UNSAFE_PTR_ARG_DEREF, correctness, "public functions dereferencing raw pointer arguments but not marked `unsafe`" } #[derive(Copy, Clone)] pub struct Functions { threshold: u64, } impl Functions { pub fn new(threshold: u64) -> Self { Self { threshold, } } } impl LintPass for Functions { fn get_lints(&self) -> LintArray { lint_array!(TOO_MANY_ARGUMENTS, NOT_UNSAFE_PTR_ARG_DEREF) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Functions { fn check_fn( &mut self, cx: &LateContext<'a, 'tcx>, kind: intravisit::FnKind<'tcx>, decl: &'tcx hir::FnDecl, body: &'tcx hir::Body, span: Span, nodeid: ast::NodeId, ) { use rustc::hir::map::Node::*; let is_impl = if let Some(NodeItem(item)) = cx.tcx.hir.find(cx.tcx.hir.get_parent_node(nodeid)) { matches!(item.node, hir::ItemKind::Impl(_, _, _, _, Some(_), _, _)) } else { false }; let unsafety = match kind { hir::intravisit::FnKind::ItemFn(_, _, hir::FnHeader { unsafety, .. }, _, _) => unsafety, hir::intravisit::FnKind::Method(_, sig, _, _) => sig.header.unsafety, hir::intravisit::FnKind::Closure(_) => return, }; // don't warn for implementations, it's not their fault if !is_impl { // don't lint extern functions decls, it's not their fault either match kind { hir::intravisit::FnKind::Method(_, &hir::MethodSig { header: hir::FnHeader { abi: Abi::Rust, .. }, .. }, _, _) | hir::intravisit::FnKind::ItemFn(_, _, hir::FnHeader { abi: Abi::Rust, .. }, _, _) => self.check_arg_number(cx, decl, span), _ => {}, } } self.check_raw_ptr(cx, unsafety, decl, body, nodeid); } fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx hir::TraitItem) { if let hir::TraitItemKind::Method(ref sig, ref eid) = item.node { // don't lint extern functions decls, it's not their fault if sig.header.abi == Abi::Rust { self.check_arg_number(cx, &sig.decl, item.span); } if let hir::TraitMethod::Provided(eid) = *eid { let body = cx.tcx.hir.body(eid); self.check_raw_ptr(cx, sig.header.unsafety, &sig.decl, body, item.id); } } } } impl<'a, 'tcx> Functions { fn check_arg_number(self, cx: &LateContext, decl: &hir::FnDecl, span: Span) { let args = decl.inputs.len() as u64; if args > self.threshold { span_lint( cx, TOO_MANY_ARGUMENTS, span, &format!("this function has too many arguments ({}/{})", args, self.threshold), ); } } fn check_raw_ptr( self, cx: &LateContext<'a, 'tcx>, unsafety: hir::Unsafety, decl: &'tcx hir::FnDecl, body: &'tcx hir::Body, nodeid: ast::NodeId, ) { let expr = &body.value; if unsafety == hir::Unsafety::Normal && cx.access_levels.is_exported(nodeid) { let raw_ptrs = iter_input_pats(decl, body) .zip(decl.inputs.iter()) .filter_map(|(arg, ty)| raw_ptr_arg(arg, ty)) .collect::>(); if !raw_ptrs.is_empty() { let tables = cx.tcx.body_tables(body.id()); let mut v = DerefVisitor { cx, ptrs: raw_ptrs, tables, }; hir::intravisit::walk_expr(&mut v, expr); } } } } fn raw_ptr_arg(arg: &hir::Arg, ty: &hir::Ty) -> Option { if let (&hir::PatKind::Binding(_, id, _, _), &hir::TyKind::Ptr(_)) = (&arg.pat.node, &ty.node) { Some(id) } else { None } } struct DerefVisitor<'a, 'tcx: 'a> { cx: &'a LateContext<'a, 'tcx>, ptrs: HashSet, tables: &'a ty::TypeckTables<'tcx>, } impl<'a, 'tcx> hir::intravisit::Visitor<'tcx> for DerefVisitor<'a, 'tcx> { fn visit_expr(&mut self, expr: &'tcx hir::Expr) { match expr.node { hir::ExprKind::Call(ref f, ref args) => { let ty = self.tables.expr_ty(f); if type_is_unsafe_function(self.cx, ty) { for arg in args { self.check_arg(arg); } } }, hir::ExprKind::MethodCall(_, _, ref args) => { let def_id = self.tables.type_dependent_defs()[expr.hir_id].def_id(); let base_type = self.cx.tcx.type_of(def_id); if type_is_unsafe_function(self.cx, base_type) { for arg in args { self.check_arg(arg); } } }, hir::ExprKind::Unary(hir::UnDeref, ref ptr) => self.check_arg(ptr), _ => (), } hir::intravisit::walk_expr(self, expr); } fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> { intravisit::NestedVisitorMap::None } } impl<'a, 'tcx: 'a> DerefVisitor<'a, 'tcx> { fn check_arg(&self, ptr: &hir::Expr) { if let hir::ExprKind::Path(ref qpath) = ptr.node { if let Def::Local(id) = self.cx.tables.qpath_def(qpath, ptr.hir_id) { if self.ptrs.contains(&id) { span_lint( self.cx, NOT_UNSAFE_PTR_ARG_DEREF, ptr.span, "this public function dereferences a raw pointer but is not marked `unsafe`", ); } } } } }