use crate::utils::span_lint; use rustc::hir::*; use rustc::lint::*; use rustc::{declare_lint, lint_array}; use std::f64::consts as f64; use syntax::ast::{FloatTy, Lit, LitKind}; use syntax::symbol; /// **What it does:** Checks for floating point literals that approximate /// constants which are defined in /// [`std::f32::consts`](https://doc.rust-lang.org/stable/std/f32/consts/#constants) /// or /// [`std::f64::consts`](https://doc.rust-lang.org/stable/std/f64/consts/#constants), /// respectively, suggesting to use the predefined constant. /// /// **Why is this bad?** Usually, the definition in the standard library is more /// precise than what people come up with. If you find that your definition is /// actually more precise, please [file a Rust /// issue](https://github.com/rust-lang/rust/issues). /// /// **Known problems:** If you happen to have a value that is within 1/8192 of a /// known constant, but is not *and should not* be the same, this lint will /// report your value anyway. We have not yet noticed any false positives in /// code we tested clippy with (this includes servo), but YMMV. /// /// **Example:** /// ```rust /// let x = 3.14; /// ``` declare_clippy_lint! { pub APPROX_CONSTANT, correctness, "the approximate of a known float constant (in `std::fXX::consts`)" } // Tuples are of the form (constant, name, min_digits) const KNOWN_CONSTS: &[(f64, &str, usize)] = &[ (f64::E, "E", 4), (f64::FRAC_1_PI, "FRAC_1_PI", 4), (f64::FRAC_1_SQRT_2, "FRAC_1_SQRT_2", 5), (f64::FRAC_2_PI, "FRAC_2_PI", 5), (f64::FRAC_2_SQRT_PI, "FRAC_2_SQRT_PI", 5), (f64::FRAC_PI_2, "FRAC_PI_2", 5), (f64::FRAC_PI_3, "FRAC_PI_3", 5), (f64::FRAC_PI_4, "FRAC_PI_4", 5), (f64::FRAC_PI_6, "FRAC_PI_6", 5), (f64::FRAC_PI_8, "FRAC_PI_8", 5), (f64::LN_10, "LN_10", 5), (f64::LN_2, "LN_2", 5), (f64::LOG10_E, "LOG10_E", 5), (f64::LOG2_E, "LOG2_E", 5), (f64::PI, "PI", 3), (f64::SQRT_2, "SQRT_2", 5), ]; #[derive(Copy, Clone)] pub struct Pass; impl LintPass for Pass { fn get_lints(&self) -> LintArray { lint_array!(APPROX_CONSTANT) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx Expr) { if let ExprKind::Lit(ref lit) = e.node { check_lit(cx, lit, e); } } } fn check_lit(cx: &LateContext, lit: &Lit, e: &Expr) { match lit.node { LitKind::Float(s, FloatTy::F32) => check_known_consts(cx, e, s, "f32"), LitKind::Float(s, FloatTy::F64) => check_known_consts(cx, e, s, "f64"), LitKind::FloatUnsuffixed(s) => check_known_consts(cx, e, s, "f{32, 64}"), _ => (), } } fn check_known_consts(cx: &LateContext, e: &Expr, s: symbol::Symbol, module: &str) { let s = s.as_str(); if s.parse::().is_ok() { for &(constant, name, min_digits) in KNOWN_CONSTS { if is_approx_const(constant, &s, min_digits) { span_lint( cx, APPROX_CONSTANT, e.span, &format!( "approximate value of `{}::consts::{}` found. \ Consider using it directly", module, &name ), ); return; } } } } /// Returns false if the number of significant figures in `value` are /// less than `min_digits`; otherwise, returns true if `value` is equal /// to `constant`, rounded to the number of digits present in `value`. fn is_approx_const(constant: f64, value: &str, min_digits: usize) -> bool { if value.len() <= min_digits { false } else { let round_const = format!("{:.*}", value.len() - 2, constant); let mut trunc_const = constant.to_string(); if trunc_const.len() > value.len() { trunc_const.truncate(value.len()); } (value == round_const) || (value == trunc_const) } }