use crate::utils::{is_adjusted, iter_input_pats, snippet_opt, span_lint_and_then, type_is_unsafe_function}; use if_chain::if_chain; use rustc::hir::*; use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass}; use rustc::ty; use rustc::{declare_tool_lint, lint_array}; use rustc_errors::Applicability; pub struct EtaPass; declare_clippy_lint! { /// **What it does:** Checks for closures which just call another function where /// the function can be called directly. `unsafe` functions or calls where types /// get adjusted are ignored. /// /// **Why is this bad?** Needlessly creating a closure adds code for no benefit /// and gives the optimizer more work. /// /// **Known problems:** If creating the closure inside the closure has a side- /// effect then moving the closure creation out will change when that side- /// effect runs. /// See https://github.com/rust-lang/rust-clippy/issues/1439 for more /// details. /// /// **Example:** /// ```rust /// xs.map(|x| foo(x)) /// ``` /// where `foo(_)` is a plain function that takes the exact argument type of /// `x`. pub REDUNDANT_CLOSURE, style, "redundant closures, i.e. `|a| foo(a)` (which can be written as just `foo`)" } impl LintPass for EtaPass { fn get_lints(&self) -> LintArray { lint_array!(REDUNDANT_CLOSURE) } fn name(&self) -> &'static str { "EtaReduction" } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for EtaPass { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { if in_external_macro(cx.sess(), expr.span) { return; } match expr.node { ExprKind::Call(_, ref args) | ExprKind::MethodCall(_, _, ref args) => { for arg in args { check_closure(cx, arg) } }, _ => (), } } } fn check_closure(cx: &LateContext<'_, '_>, expr: &Expr) { if let ExprKind::Closure(_, ref decl, eid, _, _) = expr.node { let body = cx.tcx.hir().body(eid); let ex = &body.value; if_chain!( if let ExprKind::Call(ref caller, ref args) = ex.node; // Not the same number of arguments, there is no way the closure is the same as the function return; if args.len() == decl.inputs.len(); // Are the expression or the arguments type-adjusted? Then we need the closure if !(is_adjusted(cx, ex) || args.iter().any(|arg| is_adjusted(cx, arg))); let fn_ty = cx.tables.expr_ty(caller); if !type_is_unsafe_function(cx, fn_ty); if compare_inputs(&mut iter_input_pats(decl, body), &mut args.into_iter()); then { span_lint_and_then(cx, REDUNDANT_CLOSURE, expr.span, "redundant closure found", |db| { if let Some(snippet) = snippet_opt(cx, caller.span) { db.span_suggestion( expr.span, "remove closure as shown", snippet, Applicability::MachineApplicable, ); } }); } ); if_chain!( if let ExprKind::MethodCall(ref path, _, ref args) = ex.node; // Not the same number of arguments, there is no way the closure is the same as the function return; if args.len() == decl.inputs.len(); // Are the expression or the arguments type-adjusted? Then we need the closure if !(is_adjusted(cx, ex) || args.iter().skip(1).any(|arg| is_adjusted(cx, arg))); let method_def_id = cx.tables.type_dependent_defs()[ex.hir_id].def_id(); if !type_is_unsafe_function(cx, cx.tcx.type_of(method_def_id)); if compare_inputs(&mut iter_input_pats(decl, body), &mut args.into_iter()); if let Some(name) = get_ufcs_type_name(cx, method_def_id, &args[0]); then { span_lint_and_then(cx, REDUNDANT_CLOSURE, expr.span, "redundant closure found", |db| { db.span_suggestion( expr.span, "remove closure as shown", format!("{}::{}", name, path.ident.name), Applicability::MachineApplicable, ); }); } ); } } /// Tries to determine the type for universal function call to be used instead of the closure fn get_ufcs_type_name( cx: &LateContext<'_, '_>, method_def_id: def_id::DefId, self_arg: &Expr, ) -> std::option::Option { let expected_type_of_self = &cx.tcx.fn_sig(method_def_id).inputs_and_output().skip_binder()[0].sty; let actual_type_of_self = &cx.tables.node_type(self_arg.hir_id).sty; if let Some(trait_id) = cx.tcx.trait_of_item(method_def_id) { if match_borrow_depth(expected_type_of_self, actual_type_of_self) { return Some(cx.tcx.item_path_str(trait_id)); } } cx.tcx.impl_of_method(method_def_id).and_then(|_| { //a type may implicitly implement other type's methods (e.g. Deref) if match_types(expected_type_of_self, actual_type_of_self) { return Some(get_type_name(cx, &actual_type_of_self)); } None }) } fn match_borrow_depth(lhs: &ty::TyKind<'_>, rhs: &ty::TyKind<'_>) -> bool { match (lhs, rhs) { (ty::Ref(_, t1, _), ty::Ref(_, t2, _)) => match_borrow_depth(&t1.sty, &t2.sty), (l, r) => match (l, r) { (ty::Ref(_, _, _), _) | (_, ty::Ref(_, _, _)) => false, (_, _) => true, }, } } fn match_types(lhs: &ty::TyKind<'_>, rhs: &ty::TyKind<'_>) -> bool { match (lhs, rhs) { (ty::Bool, ty::Bool) | (ty::Char, ty::Char) | (ty::Int(_), ty::Int(_)) | (ty::Uint(_), ty::Uint(_)) | (ty::Str, ty::Str) => true, (ty::Ref(_, t1, _), ty::Ref(_, t2, _)) | (ty::Array(t1, _), ty::Array(t2, _)) | (ty::Slice(t1), ty::Slice(t2)) => match_types(&t1.sty, &t2.sty), (ty::Adt(def1, _), ty::Adt(def2, _)) => def1 == def2, (_, _) => false, } } fn get_type_name(cx: &LateContext<'_, '_>, kind: &ty::TyKind<'_>) -> String { match kind { ty::Adt(t, _) => cx.tcx.item_path_str(t.did), ty::Ref(_, r, _) => get_type_name(cx, &r.sty), _ => kind.to_string(), } } fn compare_inputs(closure_inputs: &mut dyn Iterator, call_args: &mut dyn Iterator) -> bool { for (closure_input, function_arg) in closure_inputs.zip(call_args) { if let PatKind::Binding(_, _, _, ident, _) = closure_input.pat.node { // XXXManishearth Should I be checking the binding mode here? if let ExprKind::Path(QPath::Resolved(None, ref p)) = function_arg.node { if p.segments.len() != 1 { // If it's a proper path, it can't be a local variable return false; } if p.segments[0].ident.name != ident.name { // The two idents should be the same return false; } } else { return false; } } else { return false; } } true }