#![allow(cast_possible_truncation)] use rustc::lint::LateContext; use rustc::middle::const_eval::lookup_const_by_id; use rustc::middle::def::{Def, PathResolution}; use rustc_front::hir::*; use std::cmp::Ordering::{self, Greater, Less, Equal}; use std::cmp::PartialOrd; use std::hash::{Hash, Hasher}; use std::mem; use std::ops::Deref; use std::rc::Rc; use syntax::ast::{FloatTy, LitIntType, LitKind, StrStyle, UintTy}; use syntax::ptr::P; #[derive(Debug, Copy, Clone)] pub enum FloatWidth { F32, F64, Any, } impl From for FloatWidth { fn from(ty: FloatTy) -> FloatWidth { match ty { FloatTy::F32 => FloatWidth::F32, FloatTy::F64 => FloatWidth::F64, } } } #[derive(Copy, Eq, Debug, Clone, PartialEq, Hash)] pub enum Sign { Plus, Minus, } /// a Lit_-like enum to fold constant `Expr`s into #[derive(Debug, Clone)] pub enum Constant { /// a String "abc" Str(String, StrStyle), /// a Binary String b"abc" Binary(Rc>), /// a single byte b'a' Byte(u8), /// a single char 'a' Char(char), /// an integer, third argument is whether the value is negated Int(u64, LitIntType, Sign), /// a float with given type Float(String, FloatWidth), /// true or false Bool(bool), /// an array of constants Vec(Vec), /// also an array, but with only one constant, repeated N times Repeat(Box, usize), /// a tuple of constants Tuple(Vec), } impl Constant { /// convert to u64 if possible /// /// # panics /// /// if the constant could not be converted to u64 losslessly fn as_u64(&self) -> u64 { if let Constant::Int(val, _, _) = *self { val // TODO we may want to check the sign if any } else { panic!("Could not convert a {:?} to u64", self); } } /// convert this constant to a f64, if possible #[allow(cast_precision_loss)] pub fn as_float(&self) -> Option { match *self { Constant::Byte(b) => Some(b as f64), Constant::Float(ref s, _) => s.parse().ok(), Constant::Int(i, _, Sign::Minus) => Some(-(i as f64)), Constant::Int(i, _, Sign::Plus) => Some(i as f64), _ => None, } } } impl PartialEq for Constant { fn eq(&self, other: &Constant) -> bool { match (self, other) { (&Constant::Str(ref ls, ref lsty), &Constant::Str(ref rs, ref rsty)) => ls == rs && lsty == rsty, (&Constant::Binary(ref l), &Constant::Binary(ref r)) => l == r, (&Constant::Byte(l), &Constant::Byte(r)) => l == r, (&Constant::Char(l), &Constant::Char(r)) => l == r, (&Constant::Int(0, _, _), &Constant::Int(0, _, _)) => true, (&Constant::Int(lv, _, lneg), &Constant::Int(rv, _, rneg)) => lv == rv && lneg == rneg, (&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => { // we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have // `Fw32 == Fw64` so don’t compare them match (ls.parse::(), rs.parse::()) { (Ok(l), Ok(r)) => l.eq(&r), _ => false, } } (&Constant::Bool(l), &Constant::Bool(r)) => l == r, (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l == r, (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => ls == rs && lv == rv, (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) => l == r, _ => false, //TODO: Are there inter-type equalities? } } } impl Hash for Constant { fn hash(&self, state: &mut H) where H: Hasher { match *self { Constant::Str(ref s, ref k) => { s.hash(state); k.hash(state); } Constant::Binary(ref b) => { b.hash(state); } Constant::Byte(u) => { u.hash(state); } Constant::Char(c) => { c.hash(state); } Constant::Int(u, _, t) => { u.hash(state); t.hash(state); } Constant::Float(ref f, _) => { // don’t use the width here because of PartialEq implementation if let Ok(f) = f.parse::() { unsafe { mem::transmute::(f) }.hash(state); } } Constant::Bool(b) => { b.hash(state); } Constant::Vec(ref v) | Constant::Tuple(ref v) => { v.hash(state); } Constant::Repeat(ref c, l) => { c.hash(state); l.hash(state); } } } } impl PartialOrd for Constant { fn partial_cmp(&self, other: &Constant) -> Option { match (self, other) { (&Constant::Str(ref ls, ref lsty), &Constant::Str(ref rs, ref rsty)) => { if lsty == rsty { Some(ls.cmp(rs)) } else { None } } (&Constant::Byte(ref l), &Constant::Byte(ref r)) => Some(l.cmp(r)), (&Constant::Char(ref l), &Constant::Char(ref r)) => Some(l.cmp(r)), (&Constant::Int(0, _, _), &Constant::Int(0, _, _)) => Some(Equal), (&Constant::Int(ref lv, _, Sign::Plus), &Constant::Int(ref rv, _, Sign::Plus)) => Some(lv.cmp(rv)), (&Constant::Int(ref lv, _, Sign::Minus), &Constant::Int(ref rv, _, Sign::Minus)) => Some(rv.cmp(lv)), (&Constant::Int(_, _, Sign::Minus), &Constant::Int(_, _, Sign::Plus)) => Some(Less), (&Constant::Int(_, _, Sign::Plus), &Constant::Int(_, _, Sign::Minus)) => Some(Greater), (&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => { match (ls.parse::(), rs.parse::()) { (Ok(ref l), Ok(ref r)) => l.partial_cmp(r), _ => None, } } (&Constant::Bool(ref l), &Constant::Bool(ref r)) => Some(l.cmp(r)), (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l.partial_cmp(&r), (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => { match lv.partial_cmp(rv) { Some(Equal) => Some(ls.cmp(rs)), x => x, } } (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) => l.partial_cmp(r), _ => None, //TODO: Are there any useful inter-type orderings? } } } fn lit_to_constant(lit: &LitKind) -> Constant { match *lit { LitKind::Str(ref is, style) => Constant::Str(is.to_string(), style), LitKind::Byte(b) => Constant::Byte(b), LitKind::ByteStr(ref s) => Constant::Binary(s.clone()), LitKind::Char(c) => Constant::Char(c), LitKind::Int(value, ty) => Constant::Int(value, ty, Sign::Plus), LitKind::Float(ref is, ty) => Constant::Float(is.to_string(), ty.into()), LitKind::FloatUnsuffixed(ref is) => Constant::Float(is.to_string(), FloatWidth::Any), LitKind::Bool(b) => Constant::Bool(b), } } fn constant_not(o: Constant) -> Option { use self::Constant::*; match o { Bool(b) => Some(Bool(!b)), Int(value, LitIntType::Signed(ity), Sign::Plus) if value != ::std::u64::MAX => { Some(Int(value + 1, LitIntType::Signed(ity), Sign::Minus)) } Int(0, LitIntType::Signed(ity), Sign::Minus) => Some(Int(1, LitIntType::Signed(ity), Sign::Minus)), Int(value, LitIntType::Signed(ity), Sign::Minus) => Some(Int(value - 1, LitIntType::Signed(ity), Sign::Plus)), Int(value, LitIntType::Unsigned(ity), Sign::Plus) => { let mask = match ity { UintTy::U8 => ::std::u8::MAX as u64, UintTy::U16 => ::std::u16::MAX as u64, UintTy::U32 => ::std::u32::MAX as u64, UintTy::U64 => ::std::u64::MAX, UintTy::Us => { return None; } // refuse to guess }; Some(Int(!value & mask, LitIntType::Unsigned(ity), Sign::Plus)) } _ => None, } } fn constant_negate(o: Constant) -> Option { use self::Constant::*; match o { Int(value, LitIntType::Signed(ity), sign) => Some(Int(value, LitIntType::Signed(ity), neg_sign(sign))), Int(value, LitIntType::Unsuffixed, sign) => Some(Int(value, LitIntType::Unsuffixed, neg_sign(sign))), Float(is, ty) => Some(Float(neg_float_str(is), ty)), _ => None, } } fn neg_sign(s: Sign) -> Sign { match s { Sign::Plus => Sign::Minus, Sign::Minus => Sign::Plus, } } fn neg_float_str(s: String) -> String { if s.starts_with('-') { s[1..].to_owned() } else { format!("-{}", s) } } fn unify_int_type(l: LitIntType, r: LitIntType) -> Option { use syntax::ast::LitIntType::*; match (l, r) { (Signed(lty), Signed(rty)) => { if lty == rty { Some(LitIntType::Signed(lty)) } else { None } } (Unsigned(lty), Unsigned(rty)) => { if lty == rty { Some(LitIntType::Unsigned(lty)) } else { None } } (Unsuffixed, Unsuffixed) => Some(Unsuffixed), (Signed(lty), Unsuffixed) => Some(Signed(lty)), (Unsigned(lty), Unsuffixed) => Some(Unsigned(lty)), (Unsuffixed, Signed(rty)) => Some(Signed(rty)), (Unsuffixed, Unsigned(rty)) => Some(Unsigned(rty)), _ => None, } } pub fn constant(lcx: &LateContext, e: &Expr) -> Option<(Constant, bool)> { let mut cx = ConstEvalLateContext { lcx: Some(lcx), needed_resolution: false, }; cx.expr(e).map(|cst| (cst, cx.needed_resolution)) } pub fn constant_simple(e: &Expr) -> Option { let mut cx = ConstEvalLateContext { lcx: None, needed_resolution: false, }; cx.expr(e) } struct ConstEvalLateContext<'c, 'cc: 'c> { lcx: Option<&'c LateContext<'c, 'cc>>, needed_resolution: bool, } impl<'c, 'cc> ConstEvalLateContext<'c, 'cc> { /// simple constant folding: Insert an expression, get a constant or none. fn expr(&mut self, e: &Expr) -> Option { match e.node { ExprPath(_, _) => self.fetch_path(e), ExprBlock(ref block) => self.block(block), ExprIf(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, otherwise), ExprLit(ref lit) => Some(lit_to_constant(&lit.node)), ExprVec(ref vec) => self.multi(vec).map(Constant::Vec), ExprTup(ref tup) => self.multi(tup).map(Constant::Tuple), ExprRepeat(ref value, ref number) => { self.binop_apply(value, number, |v, n| Some(Constant::Repeat(Box::new(v), n.as_u64() as usize))) } ExprUnary(op, ref operand) => { self.expr(operand).and_then(|o| { match op { UnNot => constant_not(o), UnNeg => constant_negate(o), UnDeref => Some(o), } }) } ExprBinary(op, ref left, ref right) => self.binop(op, left, right), // TODO: add other expressions _ => None, } } /// create `Some(Vec![..])` of all constants, unless there is any /// non-constant part fn multi + Sized>(&mut self, vec: &[E]) -> Option> { vec.iter() .map(|elem| self.expr(elem)) .collect::>() } /// lookup a possibly constant expression from a ExprPath fn fetch_path(&mut self, e: &Expr) -> Option { if let Some(lcx) = self.lcx { let mut maybe_id = None; if let Some(&PathResolution { base_def: Def::Const(id), ..}) = lcx.tcx.def_map.borrow().get(&e.id) { maybe_id = Some(id); } // separate if lets to avoid double borrowing the def_map if let Some(id) = maybe_id { if let Some((const_expr, _ty)) = lookup_const_by_id(lcx.tcx, id, None, None) { let ret = self.expr(const_expr); if ret.is_some() { self.needed_resolution = true; } return ret; } } } None } /// A block can only yield a constant if it only has one constant expression fn block(&mut self, block: &Block) -> Option { if block.stmts.is_empty() { block.expr.as_ref().and_then(|ref b| self.expr(b)) } else { None } } fn ifthenelse(&mut self, cond: &Expr, then: &Block, otherwise: &Option>) -> Option { if let Some(Constant::Bool(b)) = self.expr(cond) { if b { self.block(then) } else { otherwise.as_ref().and_then(|expr| self.expr(expr)) } } else { None } } fn binop(&mut self, op: BinOp, left: &Expr, right: &Expr) -> Option { match op.node { BiAdd => { self.binop_apply(left, right, |l, r| { match (l, r) { (Constant::Byte(l8), Constant::Byte(r8)) => l8.checked_add(r8).map(Constant::Byte), (Constant::Int(l64, lty, lsign), Constant::Int(r64, rty, rsign)) => { add_ints(l64, r64, lty, rty, lsign, rsign) } // TODO: float (would need bignum library?) _ => None, } }) } BiSub => { self.binop_apply(left, right, |l, r| { match (l, r) { (Constant::Byte(l8), Constant::Byte(r8)) => { if r8 > l8 { None } else { Some(Constant::Byte(l8 - r8)) } } (Constant::Int(l64, lty, lsign), Constant::Int(r64, rty, rsign)) => { add_ints(l64, r64, lty, rty, lsign, neg_sign(rsign)) } _ => None, } }) } BiMul => self.divmul(left, right, u64::checked_mul), BiDiv => self.divmul(left, right, u64::checked_div), // BiRem, BiAnd => self.short_circuit(left, right, false), BiOr => self.short_circuit(left, right, true), BiBitXor => self.bitop(left, right, |x, y| x ^ y), BiBitAnd => self.bitop(left, right, |x, y| x & y), BiBitOr => self.bitop(left, right, |x, y| (x | y)), BiShl => self.bitop(left, right, |x, y| x << y), BiShr => self.bitop(left, right, |x, y| x >> y), BiEq => self.binop_apply(left, right, |l, r| Some(Constant::Bool(l == r))), BiNe => self.binop_apply(left, right, |l, r| Some(Constant::Bool(l != r))), BiLt => self.cmp(left, right, Less, true), BiLe => self.cmp(left, right, Greater, false), BiGe => self.cmp(left, right, Less, false), BiGt => self.cmp(left, right, Greater, true), _ => None, } } fn divmul(&mut self, left: &Expr, right: &Expr, f: F) -> Option where F: Fn(u64, u64) -> Option { self.binop_apply(left, right, |l, r| { match (l, r) { (Constant::Int(l64, lty, lsign), Constant::Int(r64, rty, rsign)) => { f(l64, r64).and_then(|value| { let sign = if lsign == rsign { Sign::Plus } else { Sign::Minus }; unify_int_type(lty, rty).map(|ty| Constant::Int(value, ty, sign)) }) } _ => None, } }) } fn bitop(&mut self, left: &Expr, right: &Expr, f: F) -> Option where F: Fn(u64, u64) -> u64 { self.binop_apply(left, right, |l, r| { match (l, r) { (Constant::Bool(l), Constant::Bool(r)) => Some(Constant::Bool(f(l as u64, r as u64) != 0)), (Constant::Byte(l8), Constant::Byte(r8)) => Some(Constant::Byte(f(l8 as u64, r8 as u64) as u8)), (Constant::Int(l, lty, lsign), Constant::Int(r, rty, rsign)) => { if lsign == Sign::Plus && rsign == Sign::Plus { unify_int_type(lty, rty).map(|ty| Constant::Int(f(l, r), ty, Sign::Plus)) } else { None } } _ => None, } }) } fn cmp(&mut self, left: &Expr, right: &Expr, ordering: Ordering, b: bool) -> Option { self.binop_apply(left, right, |l, r| l.partial_cmp(&r).map(|o| Constant::Bool(b == (o == ordering)))) } fn binop_apply(&mut self, left: &Expr, right: &Expr, op: F) -> Option where F: Fn(Constant, Constant) -> Option { if let (Some(lc), Some(rc)) = (self.expr(left), self.expr(right)) { op(lc, rc) } else { None } } fn short_circuit(&mut self, left: &Expr, right: &Expr, b: bool) -> Option { self.expr(left).and_then(|left| { if let Constant::Bool(lbool) = left { if lbool == b { Some(left) } else { self.expr(right).and_then(|right| { if let Constant::Bool(_) = right { Some(right) } else { None } }) } } else { None } }) } } fn add_ints(l64: u64, r64: u64, lty: LitIntType, rty: LitIntType, lsign: Sign, rsign: Sign) -> Option { let ty = if let Some(ty) = unify_int_type(lty, rty) { ty } else { return None; }; match (lsign, rsign) { (Sign::Plus, Sign::Plus) => l64.checked_add(r64).map(|v| Constant::Int(v, ty, Sign::Plus)), (Sign::Plus, Sign::Minus) => { if r64 > l64 { Some(Constant::Int(r64 - l64, ty, Sign::Minus)) } else { Some(Constant::Int(l64 - r64, ty, Sign::Plus)) } } (Sign::Minus, Sign::Minus) => l64.checked_add(r64).map(|v| Constant::Int(v, ty, Sign::Minus)), (Sign::Minus, Sign::Plus) => { if l64 > r64 { Some(Constant::Int(l64 - r64, ty, Sign::Minus)) } else { Some(Constant::Int(r64 - l64, ty, Sign::Plus)) } } } }