use clippy_utils::diagnostics::{multispan_sugg, span_lint, span_lint_and_then}; use clippy_utils::get_enclosing_block; use clippy_utils::macros::{find_assert_eq_args, first_node_macro_backtrace}; use clippy_utils::source::snippet; use clippy_utils::ty::{implements_trait, is_copy}; use clippy_utils::{ast_utils::is_useless_with_eq_exprs, eq_expr_value, is_in_test_function}; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir::{def::Res, def_id::DefId, BinOpKind, BorrowKind, Expr, ExprKind, GenericArg, ItemKind, QPath, TyKind}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty::{self, Ty}; use rustc_session::{declare_lint_pass, declare_tool_lint}; declare_clippy_lint! { /// ### What it does /// Checks for equal operands to comparison, logical and /// bitwise, difference and division binary operators (`==`, `>`, etc., `&&`, /// `||`, `&`, `|`, `^`, `-` and `/`). /// /// ### Why is this bad? /// This is usually just a typo or a copy and paste error. /// /// ### Known problems /// False negatives: We had some false positives regarding /// calls (notably [racer](https://github.com/phildawes/racer) had one instance /// of `x.pop() && x.pop()`), so we removed matching any function or method /// calls. We may introduce a list of known pure functions in the future. /// /// ### Example /// ```rust /// # let x = 1; /// if x + 1 == x + 1 {} /// /// // or /// /// # let a = 3; /// # let b = 4; /// assert_eq!(a, a); /// ``` #[clippy::version = "pre 1.29.0"] pub EQ_OP, correctness, "equal operands on both sides of a comparison or bitwise combination (e.g., `x == x`)" } declare_clippy_lint! { /// ### What it does /// Checks for arguments to `==` which have their address /// taken to satisfy a bound /// and suggests to dereference the other argument instead /// /// ### Why is this bad? /// It is more idiomatic to dereference the other argument. /// /// ### Example /// ```rust,ignore /// &x == y /// ``` /// /// Use instead: /// ```rust,ignore /// x == *y /// ``` #[clippy::version = "pre 1.29.0"] pub OP_REF, style, "taking a reference to satisfy the type constraints on `==`" } declare_lint_pass!(EqOp => [EQ_OP, OP_REF]); impl<'tcx> LateLintPass<'tcx> for EqOp { #[expect(clippy::similar_names, clippy::too_many_lines)] fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) { if_chain! { if let Some((macro_call, macro_name)) = first_node_macro_backtrace(cx, e).find_map(|macro_call| { let name = cx.tcx.item_name(macro_call.def_id); matches!(name.as_str(), "assert_eq" | "assert_ne" | "debug_assert_eq" | "debug_assert_ne") .then(|| (macro_call, name)) }); if let Some((lhs, rhs, _)) = find_assert_eq_args(cx, e, macro_call.expn); if eq_expr_value(cx, lhs, rhs); if macro_call.is_local(); if !is_in_test_function(cx.tcx, e.hir_id); then { span_lint( cx, EQ_OP, lhs.span.to(rhs.span), &format!("identical args used in this `{}!` macro call", macro_name), ); } } if let ExprKind::Binary(op, left, right) = e.kind { if e.span.from_expansion() { return; } let macro_with_not_op = |expr_kind: &ExprKind<'_>| { if let ExprKind::Unary(_, expr) = *expr_kind { expr.span.from_expansion() } else { false } }; if macro_with_not_op(&left.kind) || macro_with_not_op(&right.kind) { return; } if is_useless_with_eq_exprs(op.node.into()) && eq_expr_value(cx, left, right) && !is_in_test_function(cx.tcx, e.hir_id) { span_lint( cx, EQ_OP, e.span, &format!("equal expressions as operands to `{}`", op.node.as_str()), ); return; } let (trait_id, requires_ref) = match op.node { BinOpKind::Add => (cx.tcx.lang_items().add_trait(), false), BinOpKind::Sub => (cx.tcx.lang_items().sub_trait(), false), BinOpKind::Mul => (cx.tcx.lang_items().mul_trait(), false), BinOpKind::Div => (cx.tcx.lang_items().div_trait(), false), BinOpKind::Rem => (cx.tcx.lang_items().rem_trait(), false), // don't lint short circuiting ops BinOpKind::And | BinOpKind::Or => return, BinOpKind::BitXor => (cx.tcx.lang_items().bitxor_trait(), false), BinOpKind::BitAnd => (cx.tcx.lang_items().bitand_trait(), false), BinOpKind::BitOr => (cx.tcx.lang_items().bitor_trait(), false), BinOpKind::Shl => (cx.tcx.lang_items().shl_trait(), false), BinOpKind::Shr => (cx.tcx.lang_items().shr_trait(), false), BinOpKind::Ne | BinOpKind::Eq => (cx.tcx.lang_items().eq_trait(), true), BinOpKind::Lt | BinOpKind::Le | BinOpKind::Ge | BinOpKind::Gt => { (cx.tcx.lang_items().partial_ord_trait(), true) }, }; if let Some(trait_id) = trait_id { match (&left.kind, &right.kind) { // do not suggest to dereference literals (&ExprKind::Lit(..), _) | (_, &ExprKind::Lit(..)) => {}, // &foo == &bar (&ExprKind::AddrOf(BorrowKind::Ref, _, l), &ExprKind::AddrOf(BorrowKind::Ref, _, r)) => { let lty = cx.typeck_results().expr_ty(l); let rty = cx.typeck_results().expr_ty(r); let lcpy = is_copy(cx, lty); let rcpy = is_copy(cx, rty); if let Some((self_ty, other_ty)) = in_impl(cx, e, trait_id) { if (are_equal(cx, rty, self_ty) && are_equal(cx, lty, other_ty)) || (are_equal(cx, rty, other_ty) && are_equal(cx, lty, self_ty)) { return; // Don't lint } } // either operator autorefs or both args are copyable if (requires_ref || (lcpy && rcpy)) && implements_trait(cx, lty, trait_id, &[rty.into()]) { span_lint_and_then( cx, OP_REF, e.span, "needlessly taken reference of both operands", |diag| { let lsnip = snippet(cx, l.span, "...").to_string(); let rsnip = snippet(cx, r.span, "...").to_string(); multispan_sugg( diag, "use the values directly", vec![(left.span, lsnip), (right.span, rsnip)], ); }, ); } else if lcpy && !rcpy && implements_trait(cx, lty, trait_id, &[cx.typeck_results().expr_ty(right).into()]) { span_lint_and_then( cx, OP_REF, e.span, "needlessly taken reference of left operand", |diag| { let lsnip = snippet(cx, l.span, "...").to_string(); diag.span_suggestion( left.span, "use the left value directly", lsnip, Applicability::MaybeIncorrect, // FIXME #2597 ); }, ); } else if !lcpy && rcpy && implements_trait(cx, cx.typeck_results().expr_ty(left), trait_id, &[rty.into()]) { span_lint_and_then( cx, OP_REF, e.span, "needlessly taken reference of right operand", |diag| { let rsnip = snippet(cx, r.span, "...").to_string(); diag.span_suggestion( right.span, "use the right value directly", rsnip, Applicability::MaybeIncorrect, // FIXME #2597 ); }, ); } }, // &foo == bar (&ExprKind::AddrOf(BorrowKind::Ref, _, l), _) => { let lty = cx.typeck_results().expr_ty(l); if let Some((self_ty, other_ty)) = in_impl(cx, e, trait_id) { let rty = cx.typeck_results().expr_ty(right); if (are_equal(cx, rty, self_ty) && are_equal(cx, lty, other_ty)) || (are_equal(cx, rty, other_ty) && are_equal(cx, lty, self_ty)) { return; // Don't lint } } let lcpy = is_copy(cx, lty); if (requires_ref || lcpy) && implements_trait(cx, lty, trait_id, &[cx.typeck_results().expr_ty(right).into()]) { span_lint_and_then( cx, OP_REF, e.span, "needlessly taken reference of left operand", |diag| { let lsnip = snippet(cx, l.span, "...").to_string(); diag.span_suggestion( left.span, "use the left value directly", lsnip, Applicability::MaybeIncorrect, // FIXME #2597 ); }, ); } }, // foo == &bar (_, &ExprKind::AddrOf(BorrowKind::Ref, _, r)) => { let rty = cx.typeck_results().expr_ty(r); if let Some((self_ty, other_ty)) = in_impl(cx, e, trait_id) { let lty = cx.typeck_results().expr_ty(left); if (are_equal(cx, rty, self_ty) && are_equal(cx, lty, other_ty)) || (are_equal(cx, rty, other_ty) && are_equal(cx, lty, self_ty)) { return; // Don't lint } } let rcpy = is_copy(cx, rty); if (requires_ref || rcpy) && implements_trait(cx, cx.typeck_results().expr_ty(left), trait_id, &[rty.into()]) { span_lint_and_then(cx, OP_REF, e.span, "taken reference of right operand", |diag| { let rsnip = snippet(cx, r.span, "...").to_string(); diag.span_suggestion( right.span, "use the right value directly", rsnip, Applicability::MaybeIncorrect, // FIXME #2597 ); }); } }, _ => {}, } } } } } fn in_impl<'tcx>( cx: &LateContext<'tcx>, e: &'tcx Expr<'_>, bin_op: DefId, ) -> Option<(&'tcx rustc_hir::Ty<'tcx>, &'tcx rustc_hir::Ty<'tcx>)> { if_chain! { if let Some(block) = get_enclosing_block(cx, e.hir_id); if let Some(impl_def_id) = cx.tcx.impl_of_method(block.hir_id.owner.to_def_id()); let item = cx.tcx.hir().expect_item(impl_def_id.expect_local()); if let ItemKind::Impl(item) = &item.kind; if let Some(of_trait) = &item.of_trait; if let Some(seg) = of_trait.path.segments.last(); if let Some(Res::Def(_, trait_id)) = seg.res; if trait_id == bin_op; if let Some(generic_args) = seg.args; if let Some(GenericArg::Type(other_ty)) = generic_args.args.last(); then { Some((item.self_ty, other_ty)) } else { None } } } fn are_equal<'tcx>(cx: &LateContext<'tcx>, middle_ty: Ty<'_>, hir_ty: &rustc_hir::Ty<'_>) -> bool { if_chain! { if let ty::Adt(adt_def, _) = middle_ty.kind(); if let Some(local_did) = adt_def.did().as_local(); let item = cx.tcx.hir().expect_item(local_did); let middle_ty_id = item.def_id.to_def_id(); if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind; if let Res::Def(_, hir_ty_id) = path.res; then { hir_ty_id == middle_ty_id } else { false } } }