#![allow(cast_possible_truncation)] use rustc::lint::LateContext; use rustc::middle::const_eval::lookup_const_by_id; use rustc::middle::def::PathResolution; use rustc::middle::def::Def::*; use rustc_front::hir::*; use syntax::ptr::P; use std::char; use std::cmp::PartialOrd; use std::cmp::Ordering::{self, Greater, Less, Equal}; use std::rc::Rc; use std::ops::Deref; use std::fmt; use self::Constant::*; use self::FloatWidth::*; use syntax::ast::Lit_::*; use syntax::ast::Lit_; use syntax::ast::LitIntType::*; use syntax::ast::LitIntType; use syntax::ast::{UintTy, FloatTy, StrStyle}; use syntax::ast::FloatTy::*; use syntax::ast::Sign::{self, Plus, Minus}; #[derive(PartialEq, Eq, Debug, Copy, Clone)] pub enum FloatWidth { Fw32, Fw64, FwAny, } impl From for FloatWidth { fn from(ty: FloatTy) -> FloatWidth { match ty { TyF32 => Fw32, TyF64 => Fw64, } } } /// a Lit_-like enum to fold constant `Expr`s into #[derive(Eq, Debug, Clone)] pub enum Constant { /// a String "abc" ConstantStr(String, StrStyle), /// a Binary String b"abc" ConstantBinary(Rc>), /// a single byte b'a' ConstantByte(u8), /// a single char 'a' ConstantChar(char), /// an integer ConstantInt(u64, LitIntType), /// a float with given type ConstantFloat(String, FloatWidth), /// true or false ConstantBool(bool), /// an array of constants ConstantVec(Vec), /// also an array, but with only one constant, repeated N times ConstantRepeat(Box, usize), /// a tuple of constants ConstantTuple(Vec), } impl Constant { /// convert to u64 if possible /// /// # panics /// /// if the constant could not be converted to u64 losslessly fn as_u64(&self) -> u64 { if let ConstantInt(val, _) = *self { val // TODO we may want to check the sign if any } else { panic!("Could not convert a {:?} to u64", self); } } /// convert this constant to a f64, if possible #[allow(cast_precision_loss)] pub fn as_float(&self) -> Option { match *self { ConstantByte(b) => Some(b as f64), ConstantFloat(ref s, _) => s.parse().ok(), ConstantInt(i, ty) => { Some(if is_negative(ty) { -(i as f64) } else { i as f64 }) } _ => None, } } } impl PartialEq for Constant { fn eq(&self, other: &Constant) -> bool { match (self, other) { (&ConstantStr(ref ls, ref lsty), &ConstantStr(ref rs, ref rsty)) => ls == rs && lsty == rsty, (&ConstantBinary(ref l), &ConstantBinary(ref r)) => l == r, (&ConstantByte(l), &ConstantByte(r)) => l == r, (&ConstantChar(l), &ConstantChar(r)) => l == r, (&ConstantInt(lv, lty), &ConstantInt(rv, rty)) => { lv == rv && (is_negative(lty) & (lv != 0)) == (is_negative(rty) & (rv != 0)) } (&ConstantFloat(ref ls, lw), &ConstantFloat(ref rs, rw)) => { if match (lw, rw) { (FwAny, _) | (_, FwAny) | (Fw32, Fw32) | (Fw64, Fw64) => true, _ => false, } { match (ls.parse::(), rs.parse::()) { (Ok(l), Ok(r)) => l.eq(&r), _ => false, } } else { false } } (&ConstantBool(l), &ConstantBool(r)) => l == r, (&ConstantVec(ref l), &ConstantVec(ref r)) => l == r, (&ConstantRepeat(ref lv, ref ls), &ConstantRepeat(ref rv, ref rs)) => ls == rs && lv == rv, (&ConstantTuple(ref l), &ConstantTuple(ref r)) => l == r, _ => false, //TODO: Are there inter-type equalities? } } } impl PartialOrd for Constant { fn partial_cmp(&self, other: &Constant) -> Option { match (self, other) { (&ConstantStr(ref ls, ref lsty), &ConstantStr(ref rs, ref rsty)) => { if lsty != rsty { None } else { Some(ls.cmp(rs)) } } (&ConstantByte(ref l), &ConstantByte(ref r)) => Some(l.cmp(r)), (&ConstantChar(ref l), &ConstantChar(ref r)) => Some(l.cmp(r)), (&ConstantInt(ref lv, lty), &ConstantInt(ref rv, rty)) => { Some(match (is_negative(lty) && *lv != 0, is_negative(rty) && *rv != 0) { (true, true) => rv.cmp(lv), (false, false) => lv.cmp(rv), (true, false) => Less, (false, true) => Greater, }) } (&ConstantFloat(ref ls, lw), &ConstantFloat(ref rs, rw)) => { if match (lw, rw) { (FwAny, _) | (_, FwAny) | (Fw32, Fw32) | (Fw64, Fw64) => true, _ => false, } { match (ls.parse::(), rs.parse::()) { (Ok(ref l), Ok(ref r)) => l.partial_cmp(r), _ => None, } } else { None } } (&ConstantBool(ref l), &ConstantBool(ref r)) => Some(l.cmp(r)), (&ConstantVec(ref l), &ConstantVec(ref r)) => l.partial_cmp(&r), (&ConstantRepeat(ref lv, ref ls), &ConstantRepeat(ref rv, ref rs)) => { match lv.partial_cmp(rv) { Some(Equal) => Some(ls.cmp(rs)), x => x, } } (&ConstantTuple(ref l), &ConstantTuple(ref r)) => l.partial_cmp(r), _ => None, //TODO: Are there any useful inter-type orderings? } } } fn format_byte(fmt: &mut fmt::Formatter, b: u8) -> fmt::Result { if b == b'\\' { write!(fmt, "\\\\") } else if 0x20 <= b && b <= 0x7e { write!(fmt, "{}", char::from_u32(b as u32).expect("all u8 are valid char")) } else if b == 0x0a { write!(fmt, "\\n") } else if b == 0x0d { write!(fmt, "\\r") } else { write!(fmt, "\\x{:02x}", b) } } impl fmt::Display for Constant { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { match *self { ConstantStr(ref s, _) => write!(fmt, "{:?}", s), ConstantByte(ref b) => { write!(fmt, "b'") .and_then(|_| format_byte(fmt, *b)) .and_then(|_| write!(fmt, "'")) } ConstantBinary(ref bs) => { try!(write!(fmt, "b\"")); for b in bs.iter() { try!(format_byte(fmt, *b)); } write!(fmt, "\"") } ConstantChar(ref c) => write!(fmt, "'{}'", c), ConstantInt(ref i, ref ity) => { let (sign, suffix) = match *ity { LitIntType::SignedIntLit(ref sity, ref sign) => { (if let Sign::Minus = *sign { "-" } else { "" }, sity.ty_to_string()) } LitIntType::UnsignedIntLit(ref uity) => ("", uity.ty_to_string()), LitIntType::UnsuffixedIntLit(ref sign) => { (if let Sign::Minus = *sign { "-" } else { "" }, "".into()) } }; write!(fmt, "{}{}{}", sign, i, suffix) } ConstantFloat(ref s, ref fw) => { let suffix = match *fw { FloatWidth::Fw32 => "f32", FloatWidth::Fw64 => "f64", FloatWidth::FwAny => "", }; write!(fmt, "{}{}", s, suffix) } ConstantBool(ref b) => write!(fmt, "{}", b), ConstantRepeat(ref c, ref n) => write!(fmt, "[{}; {}]", c, n), ConstantVec(ref v) => { write!(fmt, "[{}]", v.iter() .map(|i| format!("{}", i)) .collect::>() .join(", ")) } ConstantTuple(ref t) => { write!(fmt, "({})", t.iter() .map(|i| format!("{}", i)) .collect::>() .join(", ")) } } } } fn lit_to_constant(lit: &Lit_) -> Constant { match *lit { LitStr(ref is, style) => ConstantStr(is.to_string(), style), LitByte(b) => ConstantByte(b), LitByteStr(ref s) => ConstantBinary(s.clone()), LitChar(c) => ConstantChar(c), LitInt(value, ty) => ConstantInt(value, ty), LitFloat(ref is, ty) => ConstantFloat(is.to_string(), ty.into()), LitFloatUnsuffixed(ref is) => ConstantFloat(is.to_string(), FwAny), LitBool(b) => ConstantBool(b), } } fn constant_not(o: Constant) -> Option { Some(match o { ConstantBool(b) => ConstantBool(!b), ConstantInt(value, ty) => { let (nvalue, nty) = match ty { SignedIntLit(ity, Plus) => { if value == ::std::u64::MAX { return None; } (value + 1, SignedIntLit(ity, Minus)) } SignedIntLit(ity, Minus) => { if value == 0 { (1, SignedIntLit(ity, Minus)) } else { (value - 1, SignedIntLit(ity, Plus)) } } UnsignedIntLit(ity) => { let mask = match ity { UintTy::TyU8 => ::std::u8::MAX as u64, UintTy::TyU16 => ::std::u16::MAX as u64, UintTy::TyU32 => ::std::u32::MAX as u64, UintTy::TyU64 => ::std::u64::MAX, UintTy::TyUs => { return None; } // refuse to guess }; (!value & mask, UnsignedIntLit(ity)) } UnsuffixedIntLit(_) => { return None; } // refuse to guess }; ConstantInt(nvalue, nty) } _ => { return None; } }) } fn constant_negate(o: Constant) -> Option { Some(match o { ConstantInt(value, ty) => { ConstantInt(value, match ty { SignedIntLit(ity, sign) => SignedIntLit(ity, neg_sign(sign)), UnsuffixedIntLit(sign) => UnsuffixedIntLit(neg_sign(sign)), _ => { return None; } }) } ConstantFloat(is, ty) => ConstantFloat(neg_float_str(is), ty), _ => { return None; } }) } fn neg_sign(s: Sign) -> Sign { match s { Sign::Plus => Sign::Minus, Sign::Minus => Sign::Plus, } } fn neg_float_str(s: String) -> String { if s.starts_with('-') { s[1..].to_owned() } else { format!("-{}", s) } } /// is the given LitIntType negative? /// /// Examples /// /// ``` /// assert!(is_negative(UnsuffixedIntLit(Minus))); /// ``` pub fn is_negative(ty: LitIntType) -> bool { match ty { SignedIntLit(_, sign) | UnsuffixedIntLit(sign) => sign == Minus, UnsignedIntLit(_) => false, } } fn unify_int_type(l: LitIntType, r: LitIntType, s: Sign) -> Option { match (l, r) { (SignedIntLit(lty, _), SignedIntLit(rty, _)) => { if lty == rty { Some(SignedIntLit(lty, s)) } else { None } } (UnsignedIntLit(lty), UnsignedIntLit(rty)) => { if s == Plus && lty == rty { Some(UnsignedIntLit(lty)) } else { None } } (UnsuffixedIntLit(_), UnsuffixedIntLit(_)) => Some(UnsuffixedIntLit(s)), (SignedIntLit(lty, _), UnsuffixedIntLit(_)) => Some(SignedIntLit(lty, s)), (UnsignedIntLit(lty), UnsuffixedIntLit(rs)) => { if rs == Plus { Some(UnsignedIntLit(lty)) } else { None } } (UnsuffixedIntLit(_), SignedIntLit(rty, _)) => Some(SignedIntLit(rty, s)), (UnsuffixedIntLit(ls), UnsignedIntLit(rty)) => { if ls == Plus { Some(UnsignedIntLit(rty)) } else { None } } _ => None, } } fn add_neg_int(pos: u64, pty: LitIntType, neg: u64, nty: LitIntType) -> Option { if neg > pos { unify_int_type(nty, pty, Minus).map(|ty| ConstantInt(neg - pos, ty)) } else { unify_int_type(nty, pty, Plus).map(|ty| ConstantInt(pos - neg, ty)) } } fn sub_int(l: u64, lty: LitIntType, r: u64, rty: LitIntType, neg: bool) -> Option { unify_int_type(lty, rty, if neg { Minus } else { Plus }) .and_then(|ty| l.checked_sub(r).map(|v| ConstantInt(v, ty))) } pub fn constant(lcx: &LateContext, e: &Expr) -> Option<(Constant, bool)> { let mut cx = ConstEvalLateContext { lcx: Some(lcx), needed_resolution: false, }; cx.expr(e).map(|cst| (cst, cx.needed_resolution)) } pub fn constant_simple(e: &Expr) -> Option { let mut cx = ConstEvalLateContext { lcx: None, needed_resolution: false, }; cx.expr(e) } struct ConstEvalLateContext<'c, 'cc: 'c> { lcx: Option<&'c LateContext<'c, 'cc>>, needed_resolution: bool, } impl<'c, 'cc> ConstEvalLateContext<'c, 'cc> { /// simple constant folding: Insert an expression, get a constant or none. fn expr(&mut self, e: &Expr) -> Option { match e.node { ExprPath(_, _) => self.fetch_path(e), ExprBlock(ref block) => self.block(block), ExprIf(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, otherwise), ExprLit(ref lit) => Some(lit_to_constant(&lit.node)), ExprVec(ref vec) => self.multi(vec).map(ConstantVec), ExprTup(ref tup) => self.multi(tup).map(ConstantTuple), ExprRepeat(ref value, ref number) => { self.binop_apply(value, number, |v, n| Some(ConstantRepeat(Box::new(v), n.as_u64() as usize))) } ExprUnary(op, ref operand) => { self.expr(operand).and_then(|o| { match op { UnNot => constant_not(o), UnNeg => constant_negate(o), UnDeref => Some(o), } }) } ExprBinary(op, ref left, ref right) => self.binop(op, left, right), // TODO: add other expressions _ => None, } } /// create `Some(Vec![..])` of all constants, unless there is any /// non-constant part fn multi + Sized>(&mut self, vec: &[E]) -> Option> { vec.iter() .map(|elem| self.expr(elem)) .collect::>() } /// lookup a possibly constant expression from a ExprPath fn fetch_path(&mut self, e: &Expr) -> Option { if let Some(lcx) = self.lcx { let mut maybe_id = None; if let Some(&PathResolution { base_def: DefConst(id), ..}) = lcx.tcx.def_map.borrow().get(&e.id) { maybe_id = Some(id); } // separate if lets to avoid doubleborrowing the defmap if let Some(id) = maybe_id { if let Some(const_expr) = lookup_const_by_id(lcx.tcx, id, None) { let ret = self.expr(const_expr); if ret.is_some() { self.needed_resolution = true; } return ret; } } } None } /// A block can only yield a constant if it only has one constant expression fn block(&mut self, block: &Block) -> Option { if block.stmts.is_empty() { block.expr.as_ref().and_then(|ref b| self.expr(b)) } else { None } } fn ifthenelse(&mut self, cond: &Expr, then: &Block, otherwise: &Option>) -> Option { if let Some(ConstantBool(b)) = self.expr(cond) { if b { self.block(then) } else { otherwise.as_ref().and_then(|expr| self.expr(expr)) } } else { None } } fn binop(&mut self, op: BinOp, left: &Expr, right: &Expr) -> Option { match op.node { BiAdd => { self.binop_apply(left, right, |l, r| { match (l, r) { (ConstantByte(l8), ConstantByte(r8)) => l8.checked_add(r8).map(ConstantByte), (ConstantInt(l64, lty), ConstantInt(r64, rty)) => { let (ln, rn) = (is_negative(lty), is_negative(rty)); if ln == rn { unify_int_type(lty, rty, if ln { Minus } else { Plus }) .and_then(|ty| l64.checked_add(r64).map(|v| ConstantInt(v, ty))) } else { if ln { add_neg_int(r64, rty, l64, lty) } else { add_neg_int(l64, lty, r64, rty) } } } // TODO: float (would need bignum library?) _ => None, } }) } BiSub => { self.binop_apply(left, right, |l, r| { match (l, r) { (ConstantByte(l8), ConstantByte(r8)) => { if r8 > l8 { None } else { Some(ConstantByte(l8 - r8)) } } (ConstantInt(l64, lty), ConstantInt(r64, rty)) => { match (is_negative(lty), is_negative(rty)) { (false, false) => sub_int(l64, lty, r64, rty, r64 > l64), (true, true) => sub_int(l64, lty, r64, rty, l64 > r64), (true, false) => { unify_int_type(lty, rty, Minus) .and_then(|ty| l64.checked_add(r64).map(|v| ConstantInt(v, ty))) } (false, true) => { unify_int_type(lty, rty, Plus) .and_then(|ty| l64.checked_add(r64).map(|v| ConstantInt(v, ty))) } } } _ => None, } }) } BiMul => self.divmul(left, right, u64::checked_mul), BiDiv => self.divmul(left, right, u64::checked_div), // BiRem, BiAnd => self.short_circuit(left, right, false), BiOr => self.short_circuit(left, right, true), BiBitXor => self.bitop(left, right, |x, y| x ^ y), BiBitAnd => self.bitop(left, right, |x, y| x & y), BiBitOr => self.bitop(left, right, |x, y| (x | y)), BiShl => self.bitop(left, right, |x, y| x << y), BiShr => self.bitop(left, right, |x, y| x >> y), BiEq => self.binop_apply(left, right, |l, r| Some(ConstantBool(l == r))), BiNe => self.binop_apply(left, right, |l, r| Some(ConstantBool(l != r))), BiLt => self.cmp(left, right, Less, true), BiLe => self.cmp(left, right, Greater, false), BiGe => self.cmp(left, right, Less, false), BiGt => self.cmp(left, right, Greater, true), _ => None, } } fn divmul(&mut self, left: &Expr, right: &Expr, f: F) -> Option where F: Fn(u64, u64) -> Option { self.binop_apply(left, right, |l, r| { match (l, r) { (ConstantInt(l64, lty), ConstantInt(r64, rty)) => { f(l64, r64).and_then(|value| { unify_int_type(lty, rty, if is_negative(lty) == is_negative(rty) { Plus } else { Minus }) .map(|ty| ConstantInt(value, ty)) }) } _ => None, } }) } fn bitop(&mut self, left: &Expr, right: &Expr, f: F) -> Option where F: Fn(u64, u64) -> u64 { self.binop_apply(left, right, |l, r| { match (l, r) { (ConstantBool(l), ConstantBool(r)) => Some(ConstantBool(f(l as u64, r as u64) != 0)), (ConstantByte(l8), ConstantByte(r8)) => Some(ConstantByte(f(l8 as u64, r8 as u64) as u8)), (ConstantInt(l, lty), ConstantInt(r, rty)) => { unify_int_type(lty, rty, Plus).map(|ty| ConstantInt(f(l, r), ty)) } _ => None, } }) } fn cmp(&mut self, left: &Expr, right: &Expr, ordering: Ordering, b: bool) -> Option { self.binop_apply(left, right, |l, r| l.partial_cmp(&r).map(|o| ConstantBool(b == (o == ordering)))) } fn binop_apply(&mut self, left: &Expr, right: &Expr, op: F) -> Option where F: Fn(Constant, Constant) -> Option { if let (Some(lc), Some(rc)) = (self.expr(left), self.expr(right)) { op(lc, rc) } else { None } } fn short_circuit(&mut self, left: &Expr, right: &Expr, b: bool) -> Option { self.expr(left).and_then(|left| { if let ConstantBool(lbool) = left { if lbool == b { Some(left) } else { self.expr(right).and_then(|right| { if let ConstantBool(_) = right { Some(right) } else { None } }) } } else { None } }) } }