use if_chain::if_chain; use rustc_ast::ast::LitKind; use rustc_errors::Applicability; use rustc_hir::intravisit::FnKind; use rustc_hir::{ def, BinOpKind, BindingAnnotation, Body, Expr, ExprKind, FnDecl, HirId, Mutability, PatKind, Stmt, StmtKind, Ty, TyKind, UnOp, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::{ExpnKind, Span}; use crate::consts::{constant, Constant}; use crate::utils::sugg::Sugg; use crate::utils::{ get_item_name, get_parent_expr, implements_trait, in_constant, is_integer_const, iter_input_pats, last_path_segment, match_qpath, match_trait_method, paths, snippet, snippet_opt, span_lint, span_lint_and_sugg, span_lint_and_then, span_lint_hir_and_then, walk_ptrs_ty, SpanlessEq, }; declare_clippy_lint! { /// **What it does:** Checks for function arguments and let bindings denoted as /// `ref`. /// /// **Why is this bad?** The `ref` declaration makes the function take an owned /// value, but turns the argument into a reference (which means that the value /// is destroyed when exiting the function). This adds not much value: either /// take a reference type, or take an owned value and create references in the /// body. /// /// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The /// type of `x` is more obvious with the former. /// /// **Known problems:** If the argument is dereferenced within the function, /// removing the `ref` will lead to errors. This can be fixed by removing the /// dereferences, e.g., changing `*x` to `x` within the function. /// /// **Example:** /// ```rust /// fn foo(ref x: u8) -> bool { /// true /// } /// ``` pub TOPLEVEL_REF_ARG, style, "an entire binding declared as `ref`, in a function argument or a `let` statement" } declare_clippy_lint! { /// **What it does:** Checks for comparisons to NaN. /// /// **Why is this bad?** NaN does not compare meaningfully to anything – not /// even itself – so those comparisons are simply wrong. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let x = 1.0; /// /// if x == f32::NAN { } /// ``` pub CMP_NAN, correctness, "comparisons to `NAN`, which will always return false, probably not intended" } declare_clippy_lint! { /// **What it does:** Checks for (in-)equality comparisons on floating-point /// values (apart from zero), except in functions called `*eq*` (which probably /// implement equality for a type involving floats). /// /// **Why is this bad?** Floating point calculations are usually imprecise, so /// asking if two values are *exactly* equal is asking for trouble. For a good /// guide on what to do, see [the floating point /// guide](http://www.floating-point-gui.de/errors/comparison). /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x = 1.2331f64; /// let y = 1.2332f64; /// if y == 1.23f64 { } /// if y != x {} // where both are floats /// ``` pub FLOAT_CMP, correctness, "using `==` or `!=` on float values instead of comparing difference with an epsilon" } declare_clippy_lint! { /// **What it does:** Checks for conversions to owned values just for the sake /// of a comparison. /// /// **Why is this bad?** The comparison can operate on a reference, so creating /// an owned value effectively throws it away directly afterwards, which is /// needlessly consuming code and heap space. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let x = "foo"; /// # let y = String::from("foo"); /// if x.to_owned() == y {} /// ``` /// Could be written as /// ```rust /// # let x = "foo"; /// # let y = String::from("foo"); /// if x == y {} /// ``` pub CMP_OWNED, perf, "creating owned instances for comparing with others, e.g., `x == \"foo\".to_string()`" } declare_clippy_lint! { /// **What it does:** Checks for getting the remainder of a division by one. /// /// **Why is this bad?** The result can only ever be zero. No one will write /// such code deliberately, unless trying to win an Underhanded Rust /// Contest. Even for that contest, it's probably a bad idea. Use something more /// underhanded. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let x = 1; /// let a = x % 1; /// ``` pub MODULO_ONE, correctness, "taking a number modulo 1, which always returns 0" } declare_clippy_lint! { /// **What it does:** Checks for the use of bindings with a single leading /// underscore. /// /// **Why is this bad?** A single leading underscore is usually used to indicate /// that a binding will not be used. Using such a binding breaks this /// expectation. /// /// **Known problems:** The lint does not work properly with desugaring and /// macro, it has been allowed in the mean time. /// /// **Example:** /// ```rust /// let _x = 0; /// let y = _x + 1; // Here we are using `_x`, even though it has a leading /// // underscore. We should rename `_x` to `x` /// ``` pub USED_UNDERSCORE_BINDING, pedantic, "using a binding which is prefixed with an underscore" } declare_clippy_lint! { /// **What it does:** Checks for the use of short circuit boolean conditions as /// a /// statement. /// /// **Why is this bad?** Using a short circuit boolean condition as a statement /// may hide the fact that the second part is executed or not depending on the /// outcome of the first part. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// f() && g(); // We should write `if f() { g(); }`. /// ``` pub SHORT_CIRCUIT_STATEMENT, complexity, "using a short circuit boolean condition as a statement" } declare_clippy_lint! { /// **What it does:** Catch casts from `0` to some pointer type /// /// **Why is this bad?** This generally means `null` and is better expressed as /// {`std`, `core`}`::ptr::`{`null`, `null_mut`}. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// let a = 0 as *const u32; /// ``` pub ZERO_PTR, style, "using `0 as *{const, mut} T`" } declare_clippy_lint! { /// **What it does:** Checks for (in-)equality comparisons on floating-point /// value and constant, except in functions called `*eq*` (which probably /// implement equality for a type involving floats). /// /// **Why is this bad?** Floating point calculations are usually imprecise, so /// asking if two values are *exactly* equal is asking for trouble. For a good /// guide on what to do, see [the floating point /// guide](http://www.floating-point-gui.de/errors/comparison). /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x: f64 = 1.0; /// const ONE: f64 = 1.00; /// x == ONE; // where both are floats /// ``` pub FLOAT_CMP_CONST, restriction, "using `==` or `!=` on float constants instead of comparing difference with an epsilon" } declare_lint_pass!(MiscLints => [ TOPLEVEL_REF_ARG, CMP_NAN, FLOAT_CMP, CMP_OWNED, MODULO_ONE, USED_UNDERSCORE_BINDING, SHORT_CIRCUIT_STATEMENT, ZERO_PTR, FLOAT_CMP_CONST ]); impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MiscLints { fn check_fn( &mut self, cx: &LateContext<'a, 'tcx>, k: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, _: Span, _: HirId, ) { if let FnKind::Closure(_) = k { // Does not apply to closures return; } for arg in iter_input_pats(decl, body) { match arg.pat.kind { PatKind::Binding(BindingAnnotation::Ref, ..) | PatKind::Binding(BindingAnnotation::RefMut, ..) => { span_lint( cx, TOPLEVEL_REF_ARG, arg.pat.span, "`ref` directly on a function argument is ignored. Consider using a reference type \ instead.", ); }, _ => {}, } } } fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, stmt: &'tcx Stmt<'_>) { if_chain! { if let StmtKind::Local(ref local) = stmt.kind; if let PatKind::Binding(an, .., name, None) = local.pat.kind; if let Some(ref init) = local.init; then { if an == BindingAnnotation::Ref || an == BindingAnnotation::RefMut { let sugg_init = if init.span.from_expansion() { Sugg::hir_with_macro_callsite(cx, init, "..") } else { Sugg::hir(cx, init, "..") }; let (mutopt, initref) = if an == BindingAnnotation::RefMut { ("mut ", sugg_init.mut_addr()) } else { ("", sugg_init.addr()) }; let tyopt = if let Some(ref ty) = local.ty { format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, "_")) } else { String::new() }; span_lint_hir_and_then( cx, TOPLEVEL_REF_ARG, init.hir_id, local.pat.span, "`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead", |diag| { diag.span_suggestion( stmt.span, "try", format!( "let {name}{tyopt} = {initref};", name=snippet(cx, name.span, "_"), tyopt=tyopt, initref=initref, ), Applicability::MachineApplicable, ); } ); } } }; if_chain! { if let StmtKind::Semi(ref expr) = stmt.kind; if let ExprKind::Binary(ref binop, ref a, ref b) = expr.kind; if binop.node == BinOpKind::And || binop.node == BinOpKind::Or; if let Some(sugg) = Sugg::hir_opt(cx, a); then { span_lint_and_then(cx, SHORT_CIRCUIT_STATEMENT, stmt.span, "boolean short circuit operator in statement may be clearer using an explicit test", |diag| { let sugg = if binop.node == BinOpKind::Or { !sugg } else { sugg }; diag.span_suggestion( stmt.span, "replace it with", format!( "if {} {{ {}; }}", sugg, &snippet(cx, b.span, ".."), ), Applicability::MachineApplicable, // snippet ); }); } }; } fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) { match expr.kind { ExprKind::Cast(ref e, ref ty) => { check_cast(cx, expr.span, e, ty); return; }, ExprKind::Binary(ref cmp, ref left, ref right) => { let op = cmp.node; if op.is_comparison() { check_nan(cx, left, expr); check_nan(cx, right, expr); check_to_owned(cx, left, right); check_to_owned(cx, right, left); } if (op == BinOpKind::Eq || op == BinOpKind::Ne) && (is_float(cx, left) || is_float(cx, right)) { if is_allowed(cx, left) || is_allowed(cx, right) { return; } // Allow comparing the results of signum() if is_signum(cx, left) && is_signum(cx, right) { return; } if let Some(name) = get_item_name(cx, expr) { let name = name.as_str(); if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") || name.ends_with("_eq") { return; } } let is_comparing_arrays = is_array(cx, left) || is_array(cx, right); let (lint, msg) = get_lint_and_message( is_named_constant(cx, left) || is_named_constant(cx, right), is_comparing_arrays, ); span_lint_and_then(cx, lint, expr.span, msg, |diag| { let lhs = Sugg::hir(cx, left, ".."); let rhs = Sugg::hir(cx, right, ".."); if !is_comparing_arrays { diag.span_suggestion( expr.span, "consider comparing them within some error", format!( "({}).abs() {} error", lhs - rhs, if op == BinOpKind::Eq { '<' } else { '>' } ), Applicability::HasPlaceholders, // snippet ); } diag.note("`f32::EPSILON` and `f64::EPSILON` are available for the `error`"); }); } else if op == BinOpKind::Rem && is_integer_const(cx, right, 1) { span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0"); } }, _ => {}, } if in_attributes_expansion(expr) { // Don't lint things expanded by #[derive(...)], etc return; } let binding = match expr.kind { ExprKind::Path(ref qpath) => { let binding = last_path_segment(qpath).ident.as_str(); if binding.starts_with('_') && !binding.starts_with("__") && binding != "_result" && // FIXME: #944 is_used(cx, expr) && // don't lint if the declaration is in a macro non_macro_local(cx, cx.tables.qpath_res(qpath, expr.hir_id)) { Some(binding) } else { None } }, ExprKind::Field(_, ident) => { let name = ident.as_str(); if name.starts_with('_') && !name.starts_with("__") { Some(name) } else { None } }, _ => None, }; if let Some(binding) = binding { span_lint( cx, USED_UNDERSCORE_BINDING, expr.span, &format!( "used binding `{}` which is prefixed with an underscore. A leading \ underscore signals that a binding will not be used.", binding ), ); } } } fn get_lint_and_message( is_comparing_constants: bool, is_comparing_arrays: bool, ) -> (&'static rustc_lint::Lint, &'static str) { if is_comparing_constants { ( FLOAT_CMP_CONST, if is_comparing_arrays { "strict comparison of `f32` or `f64` constant arrays" } else { "strict comparison of `f32` or `f64` constant" }, ) } else { ( FLOAT_CMP, if is_comparing_arrays { "strict comparison of `f32` or `f64` arrays" } else { "strict comparison of `f32` or `f64`" }, ) } } fn check_nan(cx: &LateContext<'_, '_>, expr: &Expr<'_>, cmp_expr: &Expr<'_>) { if_chain! { if !in_constant(cx, cmp_expr.hir_id); if let Some((value, _)) = constant(cx, cx.tables, expr); then { let needs_lint = match value { Constant::F32(num) => num.is_nan(), Constant::F64(num) => num.is_nan(), _ => false, }; if needs_lint { span_lint( cx, CMP_NAN, cmp_expr.span, "doomed comparison with `NAN`, use `{f32,f64}::is_nan()` instead", ); } } } } fn is_named_constant<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) -> bool { if let Some((_, res)) = constant(cx, cx.tables, expr) { res } else { false } } fn is_allowed<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) -> bool { match constant(cx, cx.tables, expr) { Some((Constant::F32(f), _)) => f == 0.0 || f.is_infinite(), Some((Constant::F64(f), _)) => f == 0.0 || f.is_infinite(), Some((Constant::Vec(vec), _)) => vec.iter().all(|f| match f { Constant::F32(f) => *f == 0.0 || (*f).is_infinite(), Constant::F64(f) => *f == 0.0 || (*f).is_infinite(), _ => false, }), _ => false, } } // Return true if `expr` is the result of `signum()` invoked on a float value. fn is_signum(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool { // The negation of a signum is still a signum if let ExprKind::Unary(UnOp::UnNeg, ref child_expr) = expr.kind { return is_signum(cx, &child_expr); } if_chain! { if let ExprKind::MethodCall(ref method_name, _, ref expressions) = expr.kind; if sym!(signum) == method_name.ident.name; // Check that the receiver of the signum() is a float (expressions[0] is the receiver of // the method call) then { return is_float(cx, &expressions[0]); } } false } fn is_float(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool { let value = &walk_ptrs_ty(cx.tables.expr_ty(expr)).kind; if let ty::Array(arr_ty, _) = value { return matches!(arr_ty.kind, ty::Float(_)); }; matches!(value, ty::Float(_)) } fn is_array(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool { matches!(&walk_ptrs_ty(cx.tables.expr_ty(expr)).kind, ty::Array(_, _)) } fn check_to_owned(cx: &LateContext<'_, '_>, expr: &Expr<'_>, other: &Expr<'_>) { let (arg_ty, snip) = match expr.kind { ExprKind::MethodCall(.., ref args) if args.len() == 1 => { if match_trait_method(cx, expr, &paths::TO_STRING) || match_trait_method(cx, expr, &paths::TO_OWNED) { (cx.tables.expr_ty_adjusted(&args[0]), snippet(cx, args[0].span, "..")) } else { return; } }, ExprKind::Call(ref path, ref v) if v.len() == 1 => { if let ExprKind::Path(ref path) = path.kind { if match_qpath(path, &["String", "from_str"]) || match_qpath(path, &["String", "from"]) { (cx.tables.expr_ty_adjusted(&v[0]), snippet(cx, v[0].span, "..")) } else { return; } } else { return; } }, _ => return, }; let other_ty = cx.tables.expr_ty_adjusted(other); let partial_eq_trait_id = match cx.tcx.lang_items().eq_trait() { Some(id) => id, None => return, }; let deref_arg_impl_partial_eq_other = arg_ty.builtin_deref(true).map_or(false, |tam| { implements_trait(cx, tam.ty, partial_eq_trait_id, &[other_ty.into()]) }); let arg_impl_partial_eq_deref_other = other_ty.builtin_deref(true).map_or(false, |tam| { implements_trait(cx, arg_ty, partial_eq_trait_id, &[tam.ty.into()]) }); let arg_impl_partial_eq_other = implements_trait(cx, arg_ty, partial_eq_trait_id, &[other_ty.into()]); if !deref_arg_impl_partial_eq_other && !arg_impl_partial_eq_deref_other && !arg_impl_partial_eq_other { return; } let other_gets_derefed = match other.kind { ExprKind::Unary(UnOp::UnDeref, _) => true, _ => false, }; let lint_span = if other_gets_derefed { expr.span.to(other.span) } else { expr.span }; span_lint_and_then( cx, CMP_OWNED, lint_span, "this creates an owned instance just for comparison", |diag| { // This also catches `PartialEq` implementations that call `to_owned`. if other_gets_derefed { diag.span_label(lint_span, "try implementing the comparison without allocating"); return; } let try_hint = if deref_arg_impl_partial_eq_other { // suggest deref on the left format!("*{}", snip) } else { // suggest dropping the to_owned on the left snip.to_string() }; diag.span_suggestion( lint_span, "try", try_hint, Applicability::MachineApplicable, // snippet ); }, ); } /// Heuristic to see if an expression is used. Should be compatible with /// `unused_variables`'s idea /// of what it means for an expression to be "used". fn is_used(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool { if let Some(parent) = get_parent_expr(cx, expr) { match parent.kind { ExprKind::Assign(_, ref rhs, _) | ExprKind::AssignOp(_, _, ref rhs) => { SpanlessEq::new(cx).eq_expr(rhs, expr) }, _ => is_used(cx, parent), } } else { true } } /// Tests whether an expression is in a macro expansion (e.g., something /// generated by `#[derive(...)]` or the like). fn in_attributes_expansion(expr: &Expr<'_>) -> bool { use rustc_span::hygiene::MacroKind; if expr.span.from_expansion() { let data = expr.span.ctxt().outer_expn_data(); if let ExpnKind::Macro(MacroKind::Attr, _) = data.kind { true } else { false } } else { false } } /// Tests whether `res` is a variable defined outside a macro. fn non_macro_local(cx: &LateContext<'_, '_>, res: def::Res) -> bool { if let def::Res::Local(id) = res { !cx.tcx.hir().span(id).from_expansion() } else { false } } fn check_cast(cx: &LateContext<'_, '_>, span: Span, e: &Expr<'_>, ty: &Ty<'_>) { if_chain! { if let TyKind::Ptr(ref mut_ty) = ty.kind; if let ExprKind::Lit(ref lit) = e.kind; if let LitKind::Int(0, _) = lit.node; if !in_constant(cx, e.hir_id); then { let (msg, sugg_fn) = match mut_ty.mutbl { Mutability::Mut => ("`0 as *mut _` detected", "std::ptr::null_mut"), Mutability::Not => ("`0 as *const _` detected", "std::ptr::null"), }; let (sugg, appl) = if let TyKind::Infer = mut_ty.ty.kind { (format!("{}()", sugg_fn), Applicability::MachineApplicable) } else if let Some(mut_ty_snip) = snippet_opt(cx, mut_ty.ty.span) { (format!("{}::<{}>()", sugg_fn, mut_ty_snip), Applicability::MachineApplicable) } else { // `MaybeIncorrect` as type inference may not work with the suggested code (format!("{}()", sugg_fn), Applicability::MaybeIncorrect) }; span_lint_and_sugg(cx, ZERO_PTR, span, msg, "try", sugg, appl); } } }