use reexport::*; use rustc::hir; use rustc::hir::*; use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX}; use rustc::hir::def::Def; use rustc::hir::intravisit::{NestedVisitorMap, Visitor}; use rustc::hir::map::Node; use rustc::lint::{LateContext, Level, Lint, LintContext}; use rustc::session::Session; use rustc::traits; use rustc::ty::{self, Ty, TyCtxt}; use rustc::mir::transform::MirSource; use rustc_errors; use std::borrow::Cow; use std::env; use std::mem; use std::str::FromStr; use std::rc::Rc; use syntax::ast::{self, LitKind}; use syntax::attr; use syntax::codemap::{CompilerDesugaringKind, ExpnFormat, ExpnInfo, Span, DUMMY_SP}; use syntax::errors::DiagnosticBuilder; use syntax::ptr::P; use syntax::symbol::keywords; pub mod comparisons; pub mod conf; pub mod constants; mod hir_utils; pub mod paths; pub mod sugg; pub mod inspector; pub mod internal_lints; pub mod author; pub use self::hir_utils::{SpanlessEq, SpanlessHash}; pub type MethodArgs = HirVec>; /// Produce a nested chain of if-lets and ifs from the patterns: /// /// ```rust,ignore /// if_let_chain! {[ /// let Some(y) = x, /// y.len() == 2, /// let Some(z) = y, /// ], { /// block /// }} /// ``` /// /// becomes /// /// ```rust,ignore /// if let Some(y) = x { /// if y.len() == 2 { /// if let Some(z) = y { /// block /// } /// } /// } /// ``` #[macro_export] macro_rules! if_let_chain { ([let $pat:pat = $expr:expr, $($tt:tt)+], $block:block) => { if let $pat = $expr { if_let_chain!{ [$($tt)+], $block } } }; ([let $pat:pat = $expr:expr], $block:block) => { if let $pat = $expr { $block } }; ([let $pat:pat = $expr:expr,], $block:block) => { if let $pat = $expr { $block } }; ([$expr:expr, $($tt:tt)+], $block:block) => { if $expr { if_let_chain!{ [$($tt)+], $block } } }; ([$expr:expr], $block:block) => { if $expr { $block } }; ([$expr:expr,], $block:block) => { if $expr { $block } }; } pub mod higher; /// Returns true if the two spans come from differing expansions (i.e. one is /// from a macro and one /// isn't). pub fn differing_macro_contexts(lhs: Span, rhs: Span) -> bool { rhs.ctxt() != lhs.ctxt() } pub fn in_constant(cx: &LateContext, id: NodeId) -> bool { let parent_id = cx.tcx.hir.get_parent(id); match MirSource::from_node(cx.tcx, parent_id) { MirSource::GeneratorDrop(_) | MirSource::Fn(_) => false, MirSource::Const(_) | MirSource::Static(..) | MirSource::Promoted(..) => true, } } /// Returns true if this `expn_info` was expanded by any macro. pub fn in_macro(span: Span) -> bool { span.ctxt().outer().expn_info().map_or(false, |info| { match info.callee.format { // don't treat range expressions desugared to structs as "in_macro" ExpnFormat::CompilerDesugaring(kind) => kind != CompilerDesugaringKind::DotFill, _ => true, } }) } /// Returns true if the macro that expanded the crate was outside of the /// current crate or was a /// compiler plugin. pub fn in_external_macro<'a, T: LintContext<'a>>(cx: &T, span: Span) -> bool { /// Invokes `in_macro` with the expansion info of the given span slightly /// heavy, try to use /// this after other checks have already happened. fn in_macro_ext<'a, T: LintContext<'a>>(cx: &T, info: &ExpnInfo) -> bool { // no ExpnInfo = no macro if let ExpnFormat::MacroAttribute(..) = info.callee.format { // these are all plugins return true; } // no span for the callee = external macro info.callee.span.map_or(true, |span| { // no snippet = external macro or compiler-builtin expansion cx.sess() .codemap() .span_to_snippet(span) .ok() .map_or(true, |code| !code.starts_with("macro_rules")) }) } span.ctxt() .outer() .expn_info() .map_or(false, |info| in_macro_ext(cx, &info)) } /// Check if a `DefId`'s path matches the given absolute type path usage. /// /// # Examples /// ```rust,ignore /// match_def_path(cx.tcx, id, &["core", "option", "Option"]) /// ``` /// /// See also the `paths` module. pub fn match_def_path(tcx: TyCtxt, def_id: DefId, path: &[&str]) -> bool { use syntax::symbol; struct AbsolutePathBuffer { names: Vec, } impl ty::item_path::ItemPathBuffer for AbsolutePathBuffer { fn root_mode(&self) -> &ty::item_path::RootMode { const ABSOLUTE: &'static ty::item_path::RootMode = &ty::item_path::RootMode::Absolute; ABSOLUTE } fn push(&mut self, text: &str) { self.names.push(symbol::Symbol::intern(text).as_str()); } } let mut apb = AbsolutePathBuffer { names: vec![] }; tcx.push_item_path(&mut apb, def_id); apb.names.len() == path.len() && apb.names .into_iter() .zip(path.iter()) .all(|(a, &b)| *a == *b) } /// Check if type is struct, enum or union type with given def path. pub fn match_type(cx: &LateContext, ty: Ty, path: &[&str]) -> bool { match ty.sty { ty::TyAdt(adt, _) => match_def_path(cx.tcx, adt.did, path), _ => false, } } /// Check if the method call given in `expr` belongs to given type. pub fn match_impl_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool { let method_call = cx.tables.type_dependent_defs()[expr.hir_id]; let trt_id = cx.tcx.impl_of_method(method_call.def_id()); if let Some(trt_id) = trt_id { match_def_path(cx.tcx, trt_id, path) } else { false } } /// Check if the method call given in `expr` belongs to given trait. pub fn match_trait_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool { let method_call = cx.tables.type_dependent_defs()[expr.hir_id]; let trt_id = cx.tcx.trait_of_item(method_call.def_id()); if let Some(trt_id) = trt_id { match_def_path(cx.tcx, trt_id, path) } else { false } } pub fn last_path_segment(path: &QPath) -> &PathSegment { match *path { QPath::Resolved(_, ref path) => path.segments .last() .expect("A path must have at least one segment"), QPath::TypeRelative(_, ref seg) => seg, } } pub fn single_segment_path(path: &QPath) -> Option<&PathSegment> { match *path { QPath::Resolved(_, ref path) if path.segments.len() == 1 => Some(&path.segments[0]), QPath::Resolved(..) => None, QPath::TypeRelative(_, ref seg) => Some(seg), } } /// Match a `Path` against a slice of segment string literals. /// /// # Examples /// ```rust,ignore /// match_qpath(path, &["std", "rt", "begin_unwind"]) /// ``` pub fn match_qpath(path: &QPath, segments: &[&str]) -> bool { match *path { QPath::Resolved(_, ref path) => match_path(path, segments), QPath::TypeRelative(ref ty, ref segment) => match ty.node { TyPath(ref inner_path) => { !segments.is_empty() && match_qpath(inner_path, &segments[..(segments.len() - 1)]) && segment.name == segments[segments.len() - 1] }, _ => false, }, } } pub fn match_path(path: &Path, segments: &[&str]) -> bool { path.segments .iter() .rev() .zip(segments.iter().rev()) .all(|(a, b)| a.name == *b) } /// Match a `Path` against a slice of segment string literals, e.g. /// /// # Examples /// ```rust,ignore /// match_qpath(path, &["std", "rt", "begin_unwind"]) /// ``` pub fn match_path_ast(path: &ast::Path, segments: &[&str]) -> bool { path.segments .iter() .rev() .zip(segments.iter().rev()) .all(|(a, b)| a.identifier.name == *b) } /// Get the definition associated to a path. pub fn path_to_def(cx: &LateContext, path: &[&str]) -> Option { let crates = cx.tcx.crates(); let krate = crates .iter() .find(|&&krate| cx.tcx.crate_name(krate) == path[0]); if let Some(krate) = krate { let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX, }; let mut items = cx.tcx.item_children(krate); let mut path_it = path.iter().skip(1).peekable(); loop { let segment = match path_it.next() { Some(segment) => segment, None => return None, }; for item in mem::replace(&mut items, Rc::new(vec![])).iter() { if item.ident.name == *segment { if path_it.peek().is_none() { return Some(item.def); } items = cx.tcx.item_children(item.def.def_id()); break; } } } } else { None } } pub fn const_to_u64(c: &ty::Const) -> u64 { c.val.to_const_int().expect("eddyb says this works").to_u64().expect("see previous expect") } /// Convenience function to get the `DefId` of a trait by path. pub fn get_trait_def_id(cx: &LateContext, path: &[&str]) -> Option { let def = match path_to_def(cx, path) { Some(def) => def, None => return None, }; match def { def::Def::Trait(trait_id) => Some(trait_id), _ => None, } } /// Check whether a type implements a trait. /// See also `get_trait_def_id`. pub fn implements_trait<'a, 'tcx>( cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>, trait_id: DefId, ty_params: &[Ty<'tcx>], ) -> bool { let ty = cx.tcx.erase_regions(&ty); let obligation = cx.tcx .predicate_for_trait_def(cx.param_env, traits::ObligationCause::dummy(), trait_id, 0, ty, ty_params); cx.tcx.infer_ctxt().enter(|infcx| { traits::SelectionContext::new(&infcx).evaluate_obligation_conservatively(&obligation) }) } /// Resolve the definition of a node from its `HirId`. pub fn resolve_node(cx: &LateContext, qpath: &QPath, id: HirId) -> def::Def { cx.tables.qpath_def(qpath, id) } /// Match an `Expr` against a chain of methods, and return the matched `Expr`s. /// /// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`, /// `matched_method_chain(expr, &["bar", "baz"])` will return a `Vec` /// containing the `Expr`s for /// `.bar()` and `.baz()` pub fn method_chain_args<'a>(expr: &'a Expr, methods: &[&str]) -> Option> { let mut current = expr; let mut matched = Vec::with_capacity(methods.len()); for method_name in methods.iter().rev() { // method chains are stored last -> first if let ExprMethodCall(ref path, _, ref args) = current.node { if path.name == *method_name { if args.iter().any(|e| in_macro(e.span)) { return None; } matched.push(&**args); // build up `matched` backwards current = &args[0] // go to parent expression } else { return None; } } else { return None; } } matched.reverse(); // reverse `matched`, so that it is in the same order as `methods` Some(matched) } /// Get the name of the item the expression is in, if available. pub fn get_item_name(cx: &LateContext, expr: &Expr) -> Option { let parent_id = cx.tcx.hir.get_parent(expr.id); match cx.tcx.hir.find(parent_id) { Some(Node::NodeItem(&Item { ref name, .. })) | Some(Node::NodeTraitItem(&TraitItem { ref name, .. })) | Some(Node::NodeImplItem(&ImplItem { ref name, .. })) => Some(*name), _ => None, } } struct ContainsName { name: Name, result: bool, } impl<'tcx> Visitor<'tcx> for ContainsName { fn visit_name(&mut self, _: Span, name: Name) { if self.name == name { self.result = true; } } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } } /// check if an `Expr` contains a certain name pub fn contains_name(name: Name, expr: &Expr) -> bool { let mut cn = ContainsName { name: name, result: false, }; cn.visit_expr(expr); cn.result } /// Convert a span to a code snippet if available, otherwise use default. /// /// # Example /// ```rust,ignore /// snippet(cx, expr.span, "..") /// ``` pub fn snippet<'a, 'b, T: LintContext<'b>>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> { snippet_opt(cx, span).map_or_else(|| Cow::Borrowed(default), From::from) } /// Convert a span to a code snippet. Returns `None` if not available. pub fn snippet_opt<'a, T: LintContext<'a>>(cx: &T, span: Span) -> Option { cx.sess().codemap().span_to_snippet(span).ok() } /// Convert a span (from a block) to a code snippet if available, otherwise use /// default. /// This trims the code of indentation, except for the first line. Use it for /// blocks or block-like /// things which need to be printed as such. /// /// # Example /// ```rust,ignore /// snippet(cx, expr.span, "..") /// ``` pub fn snippet_block<'a, 'b, T: LintContext<'b>>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> { let snip = snippet(cx, span, default); trim_multiline(snip, true) } /// Like `snippet_block`, but add braces if the expr is not an `ExprBlock`. /// Also takes an `Option` which can be put inside the braces. pub fn expr_block<'a, 'b, T: LintContext<'b>>( cx: &T, expr: &Expr, option: Option, default: &'a str, ) -> Cow<'a, str> { let code = snippet_block(cx, expr.span, default); let string = option.unwrap_or_default(); if let ExprBlock(_) = expr.node { Cow::Owned(format!("{}{}", code, string)) } else if string.is_empty() { Cow::Owned(format!("{{ {} }}", code)) } else { Cow::Owned(format!("{{\n{};\n{}\n}}", code, string)) } } /// Trim indentation from a multiline string with possibility of ignoring the /// first line. pub fn trim_multiline(s: Cow, ignore_first: bool) -> Cow { let s_space = trim_multiline_inner(s, ignore_first, ' '); let s_tab = trim_multiline_inner(s_space, ignore_first, '\t'); trim_multiline_inner(s_tab, ignore_first, ' ') } fn trim_multiline_inner(s: Cow, ignore_first: bool, ch: char) -> Cow { let x = s.lines() .skip(ignore_first as usize) .filter_map(|l| { if l.is_empty() { None } else { // ignore empty lines Some( l.char_indices() .find(|&(_, x)| x != ch) .unwrap_or((l.len(), ch)) .0, ) } }) .min() .unwrap_or(0); if x > 0 { Cow::Owned( s.lines() .enumerate() .map(|(i, l)| if (ignore_first && i == 0) || l.is_empty() { l } else { l.split_at(x).1 }) .collect::>() .join("\n"), ) } else { s } } /// Get a parent expressions if any – this is useful to constrain a lint. pub fn get_parent_expr<'c>(cx: &'c LateContext, e: &Expr) -> Option<&'c Expr> { let map = &cx.tcx.hir; let node_id: NodeId = e.id; let parent_id: NodeId = map.get_parent_node(node_id); if node_id == parent_id { return None; } map.find(parent_id) .and_then(|node| if let Node::NodeExpr(parent) = node { Some(parent) } else { None }) } pub fn get_enclosing_block<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, node: NodeId) -> Option<&'tcx Block> { let map = &cx.tcx.hir; let enclosing_node = map.get_enclosing_scope(node) .and_then(|enclosing_id| map.find(enclosing_id)); if let Some(node) = enclosing_node { match node { Node::NodeBlock(block) => Some(block), Node::NodeItem(&Item { node: ItemFn(_, _, _, _, _, eid), .. }) => match cx.tcx.hir.body(eid).value.node { ExprBlock(ref block) => Some(block), _ => None, }, _ => None, } } else { None } } pub struct DiagnosticWrapper<'a>(pub DiagnosticBuilder<'a>); impl<'a> Drop for DiagnosticWrapper<'a> { fn drop(&mut self) { self.0.emit(); } } impl<'a> DiagnosticWrapper<'a> { fn docs_link(&mut self, lint: &'static Lint) { if env::var("CLIPPY_DISABLE_DOCS_LINKS").is_err() { self.0.help(&format!( "for further information visit https://rust-lang-nursery.github.io/rust-clippy/v{}/index.html#{}", env!("CARGO_PKG_VERSION"), lint.name_lower() )); } } } pub fn span_lint<'a, T: LintContext<'a>>(cx: &T, lint: &'static Lint, sp: Span, msg: &str) { DiagnosticWrapper(cx.struct_span_lint(lint, sp, msg)).docs_link(lint); } pub fn span_help_and_lint<'a, 'tcx: 'a, T: LintContext<'tcx>>( cx: &'a T, lint: &'static Lint, span: Span, msg: &str, help: &str, ) { let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, span, msg)); db.0.help(help); db.docs_link(lint); } pub fn span_note_and_lint<'a, 'tcx: 'a, T: LintContext<'tcx>>( cx: &'a T, lint: &'static Lint, span: Span, msg: &str, note_span: Span, note: &str, ) { let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, span, msg)); if note_span == span { db.0.note(note); } else { db.0.span_note(note_span, note); } db.docs_link(lint); } pub fn span_lint_and_then<'a, 'tcx: 'a, T: LintContext<'tcx>, F>( cx: &'a T, lint: &'static Lint, sp: Span, msg: &str, f: F, ) where F: for<'b> FnOnce(&mut DiagnosticBuilder<'b>), { let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, sp, msg)); f(&mut db.0); db.docs_link(lint); } pub fn span_lint_and_sugg<'a, 'tcx: 'a, T: LintContext<'tcx>>( cx: &'a T, lint: &'static Lint, sp: Span, msg: &str, help: &str, sugg: String, ) { span_lint_and_then(cx, lint, sp, msg, |db| { db.span_suggestion(sp, help, sugg); }); } /// Create a suggestion made from several `span → replacement`. /// /// Note: in the JSON format (used by `compiletest_rs`), the help message will /// appear once per /// replacement. In human-readable format though, it only appears once before /// the whole suggestion. pub fn multispan_sugg(db: &mut DiagnosticBuilder, help_msg: String, sugg: Vec<(Span, String)>) { let sugg = rustc_errors::CodeSuggestion { substitution_parts: sugg.into_iter() .map(|(span, sub)| { rustc_errors::Substitution { span: span, substitutions: vec![sub], } }) .collect(), msg: help_msg, show_code_when_inline: true, }; db.suggestions.push(sugg); } /// Return the base type for HIR references and pointers. pub fn walk_ptrs_hir_ty(ty: &hir::Ty) -> &hir::Ty { match ty.node { TyPtr(ref mut_ty) | TyRptr(_, ref mut_ty) => walk_ptrs_hir_ty(&mut_ty.ty), _ => ty } } /// Return the base type for references and raw pointers. pub fn walk_ptrs_ty(ty: Ty) -> Ty { match ty.sty { ty::TyRef(_, ref tm) => walk_ptrs_ty(tm.ty), _ => ty, } } /// Return the base type for references and raw pointers, and count reference /// depth. pub fn walk_ptrs_ty_depth(ty: Ty) -> (Ty, usize) { fn inner(ty: Ty, depth: usize) -> (Ty, usize) { match ty.sty { ty::TyRef(_, ref tm) => inner(tm.ty, depth + 1), _ => (ty, depth), } } inner(ty, 0) } /// Check whether the given expression is a constant literal of the given value. pub fn is_integer_literal(expr: &Expr, value: u128) -> bool { // FIXME: use constant folding if let ExprLit(ref spanned) = expr.node { if let LitKind::Int(v, _) = spanned.node { return v == value; } } false } pub fn is_adjusted(cx: &LateContext, e: &Expr) -> bool { cx.tables.adjustments().get(e.hir_id).is_some() } pub struct LimitStack { stack: Vec, } impl Drop for LimitStack { fn drop(&mut self) { assert_eq!(self.stack.len(), 1); } } impl LimitStack { pub fn new(limit: u64) -> Self { Self { stack: vec![limit] } } pub fn limit(&self) -> u64 { *self.stack .last() .expect("there should always be a value in the stack") } pub fn push_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) { let stack = &mut self.stack; parse_attrs(sess, attrs, name, |val| stack.push(val)); } pub fn pop_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) { let stack = &mut self.stack; parse_attrs(sess, attrs, name, |val| assert_eq!(stack.pop(), Some(val))); } } fn parse_attrs(sess: &Session, attrs: &[ast::Attribute], name: &'static str, mut f: F) { for attr in attrs { if attr.is_sugared_doc { continue; } if let Some(ref value) = attr.value_str() { if attr.name().map_or(false, |n| n == name) { if let Ok(value) = FromStr::from_str(&value.as_str()) { attr::mark_used(attr); f(value) } else { sess.span_err(attr.span, "not a number"); } } } } } /// Return the pre-expansion span if is this comes from an expansion of the /// macro `name`. /// See also `is_direct_expn_of`. pub fn is_expn_of(mut span: Span, name: &str) -> Option { loop { let span_name_span = span.ctxt() .outer() .expn_info() .map(|ei| (ei.callee.name(), ei.call_site)); match span_name_span { Some((mac_name, new_span)) if mac_name == name => return Some(new_span), None => return None, Some((_, new_span)) => span = new_span, } } } /// Return the pre-expansion span if is this directly comes from an expansion /// of the macro `name`. /// The difference with `is_expn_of` is that in /// ```rust,ignore /// foo!(bar!(42)); /// ``` /// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only /// `bar!` by /// `is_direct_expn_of`. pub fn is_direct_expn_of(span: Span, name: &str) -> Option { let span_name_span = span.ctxt() .outer() .expn_info() .map(|ei| (ei.callee.name(), ei.call_site)); match span_name_span { Some((mac_name, new_span)) if mac_name == name => Some(new_span), _ => None, } } /// Return the index of the character after the first camel-case component of /// `s`. pub fn camel_case_until(s: &str) -> usize { let mut iter = s.char_indices(); if let Some((_, first)) = iter.next() { if !first.is_uppercase() { return 0; } } else { return 0; } let mut up = true; let mut last_i = 0; for (i, c) in iter { if up { if c.is_lowercase() { up = false; } else { return last_i; } } else if c.is_uppercase() { up = true; last_i = i; } else if !c.is_lowercase() { return i; } } if up { last_i } else { s.len() } } /// Return index of the last camel-case component of `s`. pub fn camel_case_from(s: &str) -> usize { let mut iter = s.char_indices().rev(); if let Some((_, first)) = iter.next() { if !first.is_lowercase() { return s.len(); } } else { return s.len(); } let mut down = true; let mut last_i = s.len(); for (i, c) in iter { if down { if c.is_uppercase() { down = false; last_i = i; } else if !c.is_lowercase() { return last_i; } } else if c.is_lowercase() { down = true; } else { return last_i; } } last_i } /// Convenience function to get the return type of a function pub fn return_ty<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, fn_item: NodeId) -> Ty<'tcx> { let fn_def_id = cx.tcx.hir.local_def_id(fn_item); let ret_ty = cx.tcx.fn_sig(fn_def_id).output(); cx.tcx.erase_late_bound_regions(&ret_ty) } /// Check if two types are the same. // FIXME: this works correctly for lifetimes bounds (`for <'a> Foo<'a>` == `for // <'b> Foo<'b>` but // not for type parameters. pub fn same_tys<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> bool { cx.tcx .infer_ctxt() .enter(|infcx| infcx.can_eq(cx.param_env, a, b).is_ok()) } /// Return whether the given type is an `unsafe` function. pub fn type_is_unsafe_function<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { match ty.sty { ty::TyFnDef(..) | ty::TyFnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe, _ => false, } } pub fn is_copy<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { !ty.moves_by_default(cx.tcx.global_tcx(), cx.param_env, DUMMY_SP) } /// Return whether a pattern is refutable. pub fn is_refutable(cx: &LateContext, pat: &Pat) -> bool { fn is_enum_variant(cx: &LateContext, qpath: &QPath, id: HirId) -> bool { matches!( cx.tables.qpath_def(qpath, id), def::Def::Variant(..) | def::Def::VariantCtor(..) ) } fn are_refutable<'a, I: Iterator>(cx: &LateContext, mut i: I) -> bool { i.any(|pat| is_refutable(cx, pat)) } match pat.node { PatKind::Binding(..) | PatKind::Wild => false, PatKind::Box(ref pat) | PatKind::Ref(ref pat, _) => is_refutable(cx, pat), PatKind::Lit(..) | PatKind::Range(..) => true, PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.hir_id), PatKind::Tuple(ref pats, _) => are_refutable(cx, pats.iter().map(|pat| &**pat)), PatKind::Struct(ref qpath, ref fields, _) => if is_enum_variant(cx, qpath, pat.hir_id) { true } else { are_refutable(cx, fields.iter().map(|field| &*field.node.pat)) }, PatKind::TupleStruct(ref qpath, ref pats, _) => if is_enum_variant(cx, qpath, pat.hir_id) { true } else { are_refutable(cx, pats.iter().map(|pat| &**pat)) }, PatKind::Slice(ref head, ref middle, ref tail) => are_refutable( cx, head.iter() .chain(middle) .chain(tail.iter()) .map(|pat| &**pat), ), } } /// Checks for the `#[automatically_derived]` attribute all `#[derive]`d /// implementations have. pub fn is_automatically_derived(attrs: &[ast::Attribute]) -> bool { attr::contains_name(attrs, "automatically_derived") } /// Remove blocks around an expression. /// /// Ie. `x`, `{ x }` and `{{{{ x }}}}` all give `x`. `{ x; y }` and `{}` return /// themselves. pub fn remove_blocks(expr: &Expr) -> &Expr { if let ExprBlock(ref block) = expr.node { if block.stmts.is_empty() { if let Some(ref expr) = block.expr { remove_blocks(expr) } else { expr } } else { expr } } else { expr } } pub fn opt_def_id(def: Def) -> Option { match def { Def::Fn(id) | Def::Mod(id) | Def::Static(id, _) | Def::Variant(id) | Def::VariantCtor(id, ..) | Def::Enum(id) | Def::TyAlias(id) | Def::AssociatedTy(id) | Def::TyParam(id) | Def::Struct(id) | Def::StructCtor(id, ..) | Def::Union(id) | Def::Trait(id) | Def::Method(id) | Def::Const(id) | Def::AssociatedConst(id) | Def::Macro(id, ..) | Def::GlobalAsm(id) => Some(id), Def::Upvar(..) | Def::Local(_) | Def::Label(..) | Def::PrimTy(..) | Def::SelfTy(..) | Def::Err => None, } } pub fn is_self(slf: &Arg) -> bool { if let PatKind::Binding(_, _, name, _) = slf.pat.node { name.node == keywords::SelfValue.name() } else { false } } pub fn is_self_ty(slf: &hir::Ty) -> bool { if_let_chain! {[ let TyPath(ref qp) = slf.node, let QPath::Resolved(None, ref path) = *qp, let Def::SelfTy(..) = path.def, ], { return true }} false } pub fn iter_input_pats<'tcx>(decl: &FnDecl, body: &'tcx Body) -> impl Iterator { (0..decl.inputs.len()).map(move |i| &body.arguments[i]) } /// Check if a given expression is a match expression /// expanded from `?` operator or `try` macro. pub fn is_try(expr: &Expr) -> Option<&Expr> { fn is_ok(arm: &Arm) -> bool { if_let_chain! {[ let PatKind::TupleStruct(ref path, ref pat, None) = arm.pats[0].node, match_qpath(path, &paths::RESULT_OK[1..]), let PatKind::Binding(_, defid, _, None) = pat[0].node, let ExprPath(QPath::Resolved(None, ref path)) = arm.body.node, let Def::Local(lid) = path.def, lid == defid, ], { return true; }} false } fn is_err(arm: &Arm) -> bool { if let PatKind::TupleStruct(ref path, _, _) = arm.pats[0].node { match_qpath(path, &paths::RESULT_ERR[1..]) } else { false } } if let ExprMatch(_, ref arms, ref source) = expr.node { // desugared from a `?` operator if let MatchSource::TryDesugar = *source { return Some(expr); } if_let_chain! {[ arms.len() == 2, arms[0].pats.len() == 1 && arms[0].guard.is_none(), arms[1].pats.len() == 1 && arms[1].guard.is_none(), (is_ok(&arms[0]) && is_err(&arms[1])) || (is_ok(&arms[1]) && is_err(&arms[0])), ], { return Some(expr); }} } None } pub fn type_size<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> Option { ty.layout(cx.tcx, cx.param_env) .ok() .map(|layout| layout.size(cx.tcx).bytes()) } /// Returns true if the lint is allowed in the current context /// /// Useful for skipping long running code when it's unnecessary pub fn is_allowed(cx: &LateContext, lint: &'static Lint, id: NodeId) -> bool { cx.tcx.lint_level_at_node(lint, id).0 == Level::Allow }