use rustc::hir; use rustc::lint::*; use utils::{span_lint_and_then, snippet_opt, SpanlessEq, get_trait_def_id, implements_trait}; use utils::{higher, sugg}; /// **What it does:** Checks for compound assignment operations (`+=` and similar). /// /// **Why is this bad?** Projects with many developers from languages without /// those operations may find them unreadable and not worth their weight. /// /// **Known problems:** Types implementing `OpAssign` don't necessarily implement `Op`. /// /// **Example:** /// ```rust /// a += 1; /// ``` declare_restriction_lint! { pub ASSIGN_OPS, "any compound assignment operation" } /// **What it does:** Checks for `a = a op b` or `a = b commutative_op a` patterns. /// /// **Why is this bad?** These can be written as the shorter `a op= b`. /// /// **Known problems:** While forbidden by the spec, `OpAssign` traits may have /// implementations that differ from the regular `Op` impl. /// /// **Example:** /// ```rust /// let mut a = 5; /// ... /// a = a + b; /// ``` declare_lint! { pub ASSIGN_OP_PATTERN, Warn, "assigning the result of an operation on a variable to that same variable" } /// **What it does:** Checks for `a op= a op b` or `a op= b op a` patterns. /// /// **Why is this bad?** Most likely these are bugs where one meant to write `a op= b`. /// /// **Known problems:** Someone might actually mean `a op= a op b`, but that /// should rather be written as `a = (2 * a) op b` where applicable. /// /// **Example:** /// ```rust /// let mut a = 5; /// ... /// a += a + b; /// ``` declare_lint! { pub MISREFACTORED_ASSIGN_OP, Warn, "having a variable on both sides of an assign op" } #[derive(Copy, Clone, Default)] pub struct AssignOps; impl LintPass for AssignOps { fn get_lints(&self) -> LintArray { lint_array!(ASSIGN_OPS, ASSIGN_OP_PATTERN, MISREFACTORED_ASSIGN_OP) } } impl LateLintPass for AssignOps { fn check_expr(&mut self, cx: &LateContext, expr: &hir::Expr) { match expr.node { hir::ExprAssignOp(op, ref lhs, ref rhs) => { span_lint_and_then(cx, ASSIGN_OPS, expr.span, "assign operation detected", |db| { let lhs = &sugg::Sugg::hir(cx, lhs, ".."); let rhs = &sugg::Sugg::hir(cx, rhs, ".."); db.span_suggestion(expr.span, "replace it with", format!("{} = {}", lhs, sugg::make_binop(higher::binop(op.node), lhs, rhs))); }); if let hir::ExprBinary(binop, ref l, ref r) = rhs.node { if op.node == binop.node { let lint = |assignee: &hir::Expr, rhs: &hir::Expr| { let ty = cx.tcx.expr_ty(assignee); if ty.walk_shallow().next().is_some() { return; // implements_trait does not work with generics } let rty = cx.tcx.expr_ty(rhs); if rty.walk_shallow().next().is_some() { return; // implements_trait does not work with generics } span_lint_and_then(cx, MISREFACTORED_ASSIGN_OP, expr.span, "variable appears on both sides of an assignment operation", |db| { if let (Some(snip_a), Some(snip_r)) = (snippet_opt(cx, assignee.span), snippet_opt(cx, rhs.span)) { db.span_suggestion(expr.span, "replace it with", format!("{} {}= {}", snip_a, op.node.as_str(), snip_r)); } }); }; // lhs op= l op r if SpanlessEq::new(cx).ignore_fn().eq_expr(lhs, l) { lint(lhs, r); } // lhs op= l commutative_op r if is_commutative(op.node) && SpanlessEq::new(cx).ignore_fn().eq_expr(lhs, r) { lint(lhs, l); } } } } hir::ExprAssign(ref assignee, ref e) => { if let hir::ExprBinary(op, ref l, ref r) = e.node { let lint = |assignee: &hir::Expr, rhs: &hir::Expr| { let ty = cx.tcx.expr_ty(assignee); if ty.walk_shallow().next().is_some() { return; // implements_trait does not work with generics } let rty = cx.tcx.expr_ty(rhs); if rty.walk_shallow().next().is_some() { return; // implements_trait does not work with generics } macro_rules! ops { ($op:expr, $cx:expr, $ty:expr, $rty:expr, $($trait_name:ident:$full_trait_name:ident),+) => { match $op { $(hir::$full_trait_name => { let [krate, module] = ::utils::paths::OPS_MODULE; let path = [krate, module, concat!(stringify!($trait_name), "Assign")]; let trait_id = if let Some(trait_id) = get_trait_def_id($cx, &path) { trait_id } else { return; // useless if the trait doesn't exist }; implements_trait($cx, $ty, trait_id, vec![$rty]) },)* _ => false, } } } if ops!(op.node, cx, ty, rty, Add: BiAdd, Sub: BiSub, Mul: BiMul, Div: BiDiv, Rem: BiRem, And: BiAnd, Or: BiOr, BitAnd: BiBitAnd, BitOr: BiBitOr, BitXor: BiBitXor, Shr: BiShr, Shl: BiShl) { span_lint_and_then(cx, ASSIGN_OP_PATTERN, expr.span, "manual implementation of an assign operation", |db| { if let (Some(snip_a), Some(snip_r)) = (snippet_opt(cx, assignee.span), snippet_opt(cx, rhs.span)) { db.span_suggestion(expr.span, "replace it with", format!("{} {}= {}", snip_a, op.node.as_str(), snip_r)); } }); } }; // a = a op b if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, l) { lint(assignee, r); } // a = b commutative_op a if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, r) { match op.node { hir::BiAdd | hir::BiMul | hir::BiAnd | hir::BiOr | hir::BiBitXor | hir::BiBitAnd | hir::BiBitOr => { lint(assignee, l); } _ => {} } } } } _ => {} } } } fn is_commutative(op: hir::BinOp_) -> bool { use rustc::hir::BinOp_::*; match op { BiAdd | BiMul | BiAnd | BiOr | BiBitXor | BiBitAnd | BiBitOr | BiEq | BiNe => true, BiSub | BiDiv | BiRem | BiShl | BiShr | BiLt | BiLe | BiGe | BiGt => false, } }