//! A group of attributes that can be attached to Rust code in order //! to generate a clippy lint detecting said code automatically. #![allow(print_stdout, use_debug)] use rustc::lint::*; use rustc::hir; use rustc::hir::{Expr, Expr_, QPath}; use rustc::hir::intravisit::{NestedVisitorMap, Visitor}; use syntax::ast::{self, Attribute, LitKind, NodeId, DUMMY_NODE_ID}; use syntax::codemap::Span; use std::collections::HashMap; /// **What it does:** Generates clippy code that detects the offending pattern /// /// **Example:** /// ```rust /// fn foo() { /// // detect the following pattern /// #[clippy(author)] /// if x == 42 { /// // but ignore everything from here on /// #![clippy(author = "ignore")] /// } /// } /// ``` /// /// prints /// /// ``` /// if_let_chain!{[ /// let Expr_::ExprIf(ref cond, ref then, None) = item.node, /// let Expr_::ExprBinary(BinOp::Eq, ref left, ref right) = cond.node, /// let Expr_::ExprPath(ref path) = left.node, /// let Expr_::ExprLit(ref lit) = right.node, /// let LitKind::Int(42, _) = lit.node, /// ], { /// // report your lint here /// }} /// ``` declare_lint! { pub LINT_AUTHOR, Warn, "helper for writing lints" } pub struct Pass; impl LintPass for Pass { fn get_lints(&self) -> LintArray { lint_array!(LINT_AUTHOR) } } fn prelude() { println!("if_let_chain!{{["); } fn done() { println!("], {{"); println!(" // report your lint here"); println!("}}}}"); } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass { fn check_item(&mut self, _cx: &LateContext<'a, 'tcx>, item: &'tcx hir::Item) { if !has_attr(&item.attrs) { return; } prelude(); PrintVisitor::new("item").visit_item(item); done(); } fn check_impl_item(&mut self, _cx: &LateContext<'a, 'tcx>, item: &'tcx hir::ImplItem) { if !has_attr(&item.attrs) { return; } prelude(); PrintVisitor::new("item").visit_impl_item(item); done(); } fn check_trait_item(&mut self, _cx: &LateContext<'a, 'tcx>, item: &'tcx hir::TraitItem) { if !has_attr(&item.attrs) { return; } prelude(); PrintVisitor::new("item").visit_trait_item(item); done(); } fn check_variant(&mut self, _cx: &LateContext<'a, 'tcx>, var: &'tcx hir::Variant, generics: &hir::Generics) { if !has_attr(&var.node.attrs) { return; } prelude(); PrintVisitor::new("var").visit_variant(var, generics, DUMMY_NODE_ID); done(); } fn check_struct_field(&mut self, _cx: &LateContext<'a, 'tcx>, field: &'tcx hir::StructField) { if !has_attr(&field.attrs) { return; } prelude(); PrintVisitor::new("field").visit_struct_field(field); done(); } fn check_expr(&mut self, _cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) { if !has_attr(&expr.attrs) { return; } prelude(); PrintVisitor::new("expr").visit_expr(expr); done(); } fn check_arm(&mut self, _cx: &LateContext<'a, 'tcx>, arm: &'tcx hir::Arm) { if !has_attr(&arm.attrs) { return; } prelude(); PrintVisitor::new("arm").visit_arm(arm); done(); } fn check_stmt(&mut self, _cx: &LateContext<'a, 'tcx>, stmt: &'tcx hir::Stmt) { if !has_attr(stmt.node.attrs()) { return; } prelude(); PrintVisitor::new("stmt").visit_stmt(stmt); done(); } fn check_foreign_item(&mut self, _cx: &LateContext<'a, 'tcx>, item: &'tcx hir::ForeignItem) { if !has_attr(&item.attrs) { return; } prelude(); PrintVisitor::new("item").visit_foreign_item(item); done(); } } impl PrintVisitor { fn new(s: &'static str) -> Self { Self { ids: HashMap::new(), current: s.to_owned(), } } fn next(&mut self, s: &'static str) -> String { use std::collections::hash_map::Entry::*; match self.ids.entry(s) { // already there: start numbering from `1` Occupied(mut occ) => { let val = occ.get_mut(); *val += 1; format!("{}{}", s, *val) }, // not there: insert and return name as given Vacant(vac) => { vac.insert(0); s.to_owned() }, } } } struct PrintVisitor { /// Fields are the current index that needs to be appended to pattern /// binding names ids: HashMap<&'static str, usize>, /// the name that needs to be destructured current: String, } impl<'tcx> Visitor<'tcx> for PrintVisitor { fn visit_expr(&mut self, expr: &Expr) { print!(" let Expr_::Expr"); let current = format!("{}.node", self.current); match expr.node { Expr_::ExprBox(ref inner) => { let inner_pat = self.next("inner"); println!("Box(ref {}) = {},", inner_pat, current); self.current = inner_pat; self.visit_expr(inner); }, Expr_::ExprArray(ref elements) => { let elements_pat = self.next("elements"); println!("Array(ref {}) = {},", elements_pat, current); println!(" {}.len() == {},", elements_pat, elements.len()); for (i, element) in elements.iter().enumerate() { self.current = format!("{}[{}]", elements_pat, i); self.visit_expr(element); } }, Expr_::ExprCall(ref _func, ref _args) => { println!("Call(ref func, ref args) = {},", current); println!(" // unimplemented: `ExprCall` is not further destructured at the moment"); }, Expr_::ExprMethodCall(ref _method_name, ref _generics, ref _args) => { println!("MethodCall(ref method_name, ref generics, ref args) = {},", current); println!(" // unimplemented: `ExprMethodCall` is not further destructured at the moment"); }, Expr_::ExprTup(ref elements) => { let elements_pat = self.next("elements"); println!("Tup(ref {}) = {},", elements_pat, current); println!(" {}.len() == {},", elements_pat, elements.len()); for (i, element) in elements.iter().enumerate() { self.current = format!("{}[{}]", elements_pat, i); self.visit_expr(element); } }, Expr_::ExprBinary(ref op, ref left, ref right) => { let op_pat = self.next("op"); let left_pat = self.next("left"); let right_pat = self.next("right"); println!("Binary(ref {}, ref {}, ref {}) = {},", op_pat, left_pat, right_pat, current); println!(" BinOp_::{:?} == {}.node,", op.node, op_pat); self.current = left_pat; self.visit_expr(left); self.current = right_pat; self.visit_expr(right); }, Expr_::ExprUnary(ref op, ref inner) => { let inner_pat = self.next("inner"); println!("Unary(UnOp::{:?}, ref {}) = {},", op, inner_pat, current); self.current = inner_pat; self.visit_expr(inner); }, Expr_::ExprLit(ref lit) => { let lit_pat = self.next("lit"); println!("Lit(ref {}) = {},", lit_pat, current); match lit.node { LitKind::Bool(val) => println!(" let LitKind::Bool({:?}) = {}.node,", val, lit_pat), LitKind::Char(c) => println!(" let LitKind::Char({:?}) = {}.node,", c, lit_pat), LitKind::Byte(b) => println!(" let LitKind::Byte({}) = {}.node,", b, lit_pat), // FIXME: also check int type LitKind::Int(i, _) => println!(" let LitKind::Int({}, _) = {}.node,", i, lit_pat), LitKind::Float(..) => println!(" let LitKind::Float(..) = {}.node,", lit_pat), LitKind::FloatUnsuffixed(_) => println!(" let LitKind::FloatUnsuffixed(_) = {}.node,", lit_pat), LitKind::ByteStr(ref vec) => { let vec_pat = self.next("vec"); println!(" let LitKind::ByteStr(ref {}) = {}.node,", vec_pat, lit_pat); println!(" let [{:?}] = **{},", vec, vec_pat); }, LitKind::Str(ref text, _) => { let str_pat = self.next("s"); println!(" let LitKind::Str(ref {}) = {}.node,", str_pat, lit_pat); println!(" {}.as_str() == {:?}", str_pat, &*text.as_str()) }, } }, Expr_::ExprCast(ref expr, ref _ty) => { let cast_pat = self.next("expr"); println!("Cast(ref {}, _) = {},", cast_pat, current); self.current = cast_pat; self.visit_expr(expr); }, Expr_::ExprType(ref expr, ref _ty) => { let cast_pat = self.next("expr"); println!("Type(ref {}, _) = {},", cast_pat, current); self.current = cast_pat; self.visit_expr(expr); }, Expr_::ExprIf(ref cond, ref then, ref opt_else) => { let cond_pat = self.next("cond"); let then_pat = self.next("then"); if let Some(ref else_) = *opt_else { let else_pat = self.next("else_"); println!("If(ref {}, ref {}, Some(ref {})) = {},", cond_pat, then_pat, else_pat, current); self.current = else_pat; self.visit_expr(else_); } else { println!("If(ref {}, ref {}, None) = {},", cond_pat, then_pat, current); } self.current = cond_pat; self.visit_expr(cond); self.current = then_pat; self.visit_expr(then); }, Expr_::ExprWhile(ref _cond, ref _body, ref _opt_label) => { println!("While(ref cond, ref body, ref opt_label) = {},", current); println!(" // unimplemented: `ExprWhile` is not further destructured at the moment"); }, Expr_::ExprLoop(ref _body, ref _opt_label, ref _desuraging) => { println!("Loop(ref body, ref opt_label, ref desugaring) = {},", current); println!(" // unimplemented: `ExprLoop` is not further destructured at the moment"); }, Expr_::ExprMatch(ref _expr, ref _arms, ref _desugaring) => { println!("Match(ref expr, ref arms, ref desugaring) = {},", current); println!(" // unimplemented: `ExprMatch` is not further destructured at the moment"); }, Expr_::ExprClosure(ref _capture_clause, ref _func, _, _, _) => { println!("Closure(ref capture_clause, ref func, _, _, _) = {},", current); println!(" // unimplemented: `ExprClosure` is not further destructured at the moment"); }, Expr_::ExprYield(ref sub) => { let sub_pat = self.next("sub"); println!("Yield(ref sub) = {},", current); self.current = sub_pat; self.visit_expr(sub); }, Expr_::ExprBlock(ref block) => { let block_pat = self.next("block"); println!("Block(ref {}) = {},", block_pat, current); self.current = block_pat; self.visit_block(block); }, Expr_::ExprAssign(ref target, ref value) => { let target_pat = self.next("target"); let value_pat = self.next("value"); println!("Assign(ref {}, ref {}) = {},", target_pat, value_pat, current); self.current = target_pat; self.visit_expr(target); self.current = value_pat; self.visit_expr(value); }, Expr_::ExprAssignOp(ref op, ref target, ref value) => { let op_pat = self.next("op"); let target_pat = self.next("target"); let value_pat = self.next("value"); println!("AssignOp(ref {}, ref {}, ref {}) = {},", op_pat, target_pat, value_pat, current); println!(" BinOp_::{:?} == {}.node,", op.node, op_pat); self.current = target_pat; self.visit_expr(target); self.current = value_pat; self.visit_expr(value); }, Expr_::ExprField(ref object, ref field_name) => { let obj_pat = self.next("object"); let field_name_pat = self.next("field_name"); println!("Field(ref {}, ref {}) = {},", obj_pat, field_name_pat, current); println!(" {}.node.as_str() == {:?}", field_name_pat, field_name.node.as_str()); self.current = obj_pat; self.visit_expr(object); }, Expr_::ExprTupField(ref object, ref field_id) => { let obj_pat = self.next("object"); let field_id_pat = self.next("field_id"); println!("TupField(ref {}, ref {}) = {},", obj_pat, field_id_pat, current); println!(" {}.node == {}", field_id_pat, field_id.node); self.current = obj_pat; self.visit_expr(object); }, Expr_::ExprIndex(ref object, ref index) => { let object_pat = self.next("object"); let index_pat = self.next("index"); println!("Index(ref {}, ref {}) = {},", object_pat, index_pat, current); self.current = object_pat; self.visit_expr(object); self.current = index_pat; self.visit_expr(index); }, Expr_::ExprPath(ref path) => { let path_pat = self.next("path"); println!("Path(ref {}) = {},", path_pat, current); self.current = path_pat; self.visit_qpath(path, expr.id, expr.span); }, Expr_::ExprAddrOf(mutability, ref inner) => { let inner_pat = self.next("inner"); println!("AddrOf({:?}, ref {}) = {},", mutability, inner_pat, current); self.current = inner_pat; self.visit_expr(inner); }, Expr_::ExprBreak(ref _destination, ref opt_value) => { let destination_pat = self.next("destination"); if let Some(ref value) = *opt_value { let value_pat = self.next("value"); println!("Break(ref {}, Some(ref {})) = {},", destination_pat, value_pat, current); self.current = value_pat; self.visit_expr(value); } else { println!("Break(ref {}, None) = {},", destination_pat, current); } // FIXME: implement label printing }, Expr_::ExprAgain(ref _destination) => { let destination_pat = self.next("destination"); println!("Again(ref {}) = {},", destination_pat, current); // FIXME: implement label printing }, Expr_::ExprRet(ref opt_value) => if let Some(ref value) = *opt_value { let value_pat = self.next("value"); println!("Ret(Some(ref {})) = {},", value_pat, current); self.current = value_pat; self.visit_expr(value); } else { println!("Ret(None) = {},", current); }, Expr_::ExprInlineAsm(_, ref _input, ref _output) => { println!("InlineAsm(_, ref input, ref output) = {},", current); println!(" // unimplemented: `ExprInlineAsm` is not further destructured at the moment"); }, Expr_::ExprStruct(ref path, ref fields, ref opt_base) => { let path_pat = self.next("path"); let fields_pat = self.next("fields"); if let Some(ref base) = *opt_base { let base_pat = self.next("base"); println!( "Struct(ref {}, ref {}, Some(ref {})) = {},", path_pat, fields_pat, base_pat, current ); self.current = base_pat; self.visit_expr(base); } else { println!("Struct(ref {}, ref {}, None) = {},", path_pat, fields_pat, current); } self.current = path_pat; self.visit_qpath(path, expr.id, expr.span); println!(" {}.len() == {},", fields_pat, fields.len()); println!(" // unimplemented: field checks"); }, // FIXME: compute length (needs type info) Expr_::ExprRepeat(ref value, _) => { let value_pat = self.next("value"); println!("Repeat(ref {}, _) = {},", value_pat, current); println!("// unimplemented: repeat count check"); self.current = value_pat; self.visit_expr(value); }, } } fn visit_qpath(&mut self, path: &QPath, _: NodeId, _: Span) { print!(" match_qpath({}, &[", self.current); print_path(path, &mut true); println!("]),"); } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } } fn has_attr(attrs: &[Attribute]) -> bool { attrs.iter().any(|attr| { attr.check_name("clippy") && attr.meta_item_list().map_or(false, |list| { list.len() == 1 && match list[0].node { ast::NestedMetaItemKind::MetaItem(ref it) => it.name == "author", ast::NestedMetaItemKind::Literal(_) => false, } }) }) } fn print_path(path: &QPath, first: &mut bool) { match *path { QPath::Resolved(_, ref path) => for segment in &path.segments { if *first { *first = false; } else { print!(", "); } print!("{:?}", segment.name.as_str()); }, QPath::TypeRelative(ref ty, ref segment) => match ty.node { hir::Ty_::TyPath(ref inner_path) => { print_path(inner_path, first); if *first { *first = false; } else { print!(", "); } print!("{:?}", segment.name.as_str()); }, ref other => print!("/* unimplemented: {:?}*/", other), }, } }