use rustc::lint::*; use rustc::hir::def_id::DefId; use rustc::ty; use rustc::hir::*; use std::collections::HashSet; use syntax::ast::{Lit, LitKind, Name}; use syntax::codemap::{Span, Spanned}; use utils::{get_item_name, in_macro, snippet, span_lint, span_lint_and_sugg, walk_ptrs_ty}; /// **What it does:** Checks for getting the length of something via `.len()` /// just to compare to zero, and suggests using `.is_empty()` where applicable. /// /// **Why is this bad?** Some structures can answer `.is_empty()` much faster /// than calculating their length. Notably, for slices, getting the length /// requires a subtraction whereas `.is_empty()` is just a comparison. So it is /// good to get into the habit of using `.is_empty()`, and having it is cheap. /// Besides, it makes the intent clearer than a manual comparison. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// if x.len() == 0 { .. } /// ``` declare_lint! { pub LEN_ZERO, Warn, "checking `.len() == 0` or `.len() > 0` (or similar) when `.is_empty()` \ could be used instead" } /// **What it does:** Checks for items that implement `.len()` but not /// `.is_empty()`. /// /// **Why is this bad?** It is good custom to have both methods, because for /// some data structures, asking about the length will be a costly operation, /// whereas `.is_empty()` can usually answer in constant time. Also it used to /// lead to false positives on the [`len_zero`](#len_zero) lint – currently that /// lint will ignore such entities. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// impl X { /// pub fn len(&self) -> usize { .. } /// } /// ``` declare_lint! { pub LEN_WITHOUT_IS_EMPTY, Warn, "traits or impls with a public `len` method but no corresponding `is_empty` method" } #[derive(Copy, Clone)] pub struct LenZero; impl LintPass for LenZero { fn get_lints(&self) -> LintArray { lint_array!(LEN_ZERO, LEN_WITHOUT_IS_EMPTY) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for LenZero { fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) { if in_macro(item.span) { return; } match item.node { ItemTrait(_, _, _, ref trait_items) => check_trait_items(cx, item, trait_items), ItemImpl(_, _, _, _, None, _, ref impl_items) => check_impl_items(cx, item, impl_items), _ => (), } } fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { if in_macro(expr.span) { return; } if let ExprBinary(Spanned { node: cmp, .. }, ref left, ref right) = expr.node { match cmp { BiEq => check_cmp(cx, expr.span, left, right, ""), BiGt | BiNe => check_cmp(cx, expr.span, left, right, "!"), _ => (), } } } } fn check_trait_items(cx: &LateContext, visited_trait: &Item, trait_items: &[TraitItemRef]) { fn is_named_self(cx: &LateContext, item: &TraitItemRef, name: &str) -> bool { item.name == name && if let AssociatedItemKind::Method { has_self } = item.kind { has_self && { let did = cx.tcx.hir.local_def_id(item.id.node_id); cx.tcx.fn_sig(did).inputs().skip_binder().len() == 1 } } else { false } } // fill the set with current and super traits fn fill_trait_set<'a, 'b: 'a>(traitt: &'b Item, set: &'a mut HashSet<&'b Item>, cx: &'b LateContext) { if set.insert(traitt) { if let ItemTrait(.., ref ty_param_bounds, _) = traitt.node { for ty_param_bound in ty_param_bounds { if let TraitTyParamBound(ref poly_trait_ref, _) = *ty_param_bound { let super_trait_node_id = cx.tcx .hir .as_local_node_id(poly_trait_ref.trait_ref.path.def.def_id()) .expect("the DefId is local, the NodeId should be available"); let super_trait = cx.tcx.hir.expect_item(super_trait_node_id); fill_trait_set(super_trait, set, cx); } } } } } if cx.access_levels.is_exported(visited_trait.id) && trait_items .iter() .any(|i| is_named_self(cx, i, "len")) { let mut current_and_super_traits = HashSet::new(); fill_trait_set(visited_trait, &mut current_and_super_traits, cx); let is_empty_method_found = current_and_super_traits .iter() .flat_map(|i| match i.node { ItemTrait(.., ref trait_items) => trait_items.iter(), _ => bug!("should only handle traits"), }) .any(|i| is_named_self(cx, i, "is_empty")); if !is_empty_method_found { span_lint( cx, LEN_WITHOUT_IS_EMPTY, visited_trait.span, &format!( "trait `{}` has a `len` method but no (possibly inherited) `is_empty` method", visited_trait.name ), ); } } } fn check_impl_items(cx: &LateContext, item: &Item, impl_items: &[ImplItemRef]) { fn is_named_self(cx: &LateContext, item: &ImplItemRef, name: &str) -> bool { item.name == name && if let AssociatedItemKind::Method { has_self } = item.kind { has_self && { let did = cx.tcx.hir.local_def_id(item.id.node_id); cx.tcx.fn_sig(did).inputs().skip_binder().len() == 1 } } else { false } } let is_empty = if let Some(is_empty) = impl_items.iter().find(|i| is_named_self(cx, i, "is_empty")) { if cx.access_levels.is_exported(is_empty.id.node_id) { return; } else { "a private" } } else { "no corresponding" }; if let Some(i) = impl_items.iter().find(|i| is_named_self(cx, i, "len")) { if cx.access_levels.is_exported(i.id.node_id) { let def_id = cx.tcx.hir.local_def_id(item.id); let ty = cx.tcx.type_of(def_id); span_lint( cx, LEN_WITHOUT_IS_EMPTY, item.span, &format!("item `{}` has a public `len` method but {} `is_empty` method", ty, is_empty), ); } } } fn check_cmp(cx: &LateContext, span: Span, left: &Expr, right: &Expr, op: &str) { // check if we are in an is_empty() method if let Some(name) = get_item_name(cx, left) { if name == "is_empty" { return; } } match (&left.node, &right.node) { (&ExprLit(ref lit), &ExprMethodCall(ref method_path, _, ref args)) | (&ExprMethodCall(ref method_path, _, ref args), &ExprLit(ref lit)) => { check_len_zero(cx, span, method_path.name, args, lit, op) }, _ => (), } } fn check_len_zero(cx: &LateContext, span: Span, name: Name, args: &[Expr], lit: &Lit, op: &str) { if let Spanned { node: LitKind::Int(0, _), .. } = *lit { if name == "len" && args.len() == 1 && has_is_empty(cx, &args[0]) { span_lint_and_sugg( cx, LEN_ZERO, span, "length comparison to zero", "using `is_empty` is more concise", format!("{}{}.is_empty()", op, snippet(cx, args[0].span, "_")), ); } } } /// Check if this type has an `is_empty` method. fn has_is_empty(cx: &LateContext, expr: &Expr) -> bool { /// Get an `AssociatedItem` and return true if it matches `is_empty(self)`. fn is_is_empty(cx: &LateContext, item: &ty::AssociatedItem) -> bool { if let ty::AssociatedKind::Method = item.kind { if item.name == "is_empty" { let sig = cx.tcx.fn_sig(item.def_id); let ty = sig.skip_binder(); ty.inputs().len() == 1 } else { false } } else { false } } /// Check the inherent impl's items for an `is_empty(self)` method. fn has_is_empty_impl(cx: &LateContext, id: DefId) -> bool { cx.tcx.inherent_impls(id).iter().any(|imp| { cx.tcx.associated_items(*imp).any( |item| is_is_empty(cx, &item), ) }) } let ty = &walk_ptrs_ty(cx.tables.expr_ty(expr)); match ty.sty { ty::TyDynamic(..) => { cx.tcx .associated_items(ty.ty_to_def_id().expect("trait impl not found")) .any(|item| is_is_empty(cx, &item)) }, ty::TyProjection(_) => { ty.ty_to_def_id().map_or( false, |id| has_is_empty_impl(cx, id), ) }, ty::TyAdt(id, _) => has_is_empty_impl(cx, id.did), ty::TyArray(..) | ty::TySlice(..) | ty::TyStr => true, _ => false, } }