#![feature(tool_lints)] #![feature(const_fn)] #![warn(clippy::all, clippy::pedantic, clippy::option_unwrap_used)] #![allow(clippy::blacklisted_name, unused, clippy::print_stdout, clippy::non_ascii_literal, clippy::new_without_default, clippy::new_without_default_derive, clippy::missing_docs_in_private_items, clippy::needless_pass_by_value, clippy::default_trait_access, clippy::use_self)] use std::collections::BTreeMap; use std::collections::HashMap; use std::collections::HashSet; use std::collections::VecDeque; use std::ops::Mul; use std::iter::FromIterator; use std::rc::{self, Rc}; use std::sync::{self, Arc}; pub struct T; impl T { pub fn add(self, other: T) -> T { self } pub(crate) fn drop(&mut self) { } // no error, not public interfact fn neg(self) -> Self { self } // no error, private function fn eq(&self, other: T) -> bool { true } // no error, private function fn sub(&self, other: T) -> &T { self } // no error, self is a ref fn div(self) -> T { self } // no error, different #arguments fn rem(self, other: T) { } // no error, wrong return type fn into_u32(self) -> u32 { 0 } // fine fn into_u16(&self) -> u16 { 0 } fn to_something(self) -> u32 { 0 } fn new(self) {} } struct Lt<'a> { foo: &'a u32, } impl<'a> Lt<'a> { // The lifetime is different, but that’s irrelevant, see #734 #[allow(clippy::needless_lifetimes)] pub fn new<'b>(s: &'b str) -> Lt<'b> { unimplemented!() } } struct Lt2<'a> { foo: &'a u32, } impl<'a> Lt2<'a> { // The lifetime is different, but that’s irrelevant, see #734 pub fn new(s: &str) -> Lt2 { unimplemented!() } } struct Lt3<'a> { foo: &'a u32, } impl<'a> Lt3<'a> { // The lifetime is different, but that’s irrelevant, see #734 pub fn new() -> Lt3<'static> { unimplemented!() } } #[derive(Clone,Copy)] struct U; impl U { fn new() -> Self { U } fn to_something(self) -> u32 { 0 } // ok because U is Copy } struct V { _dummy: T } impl V { fn new() -> Option> { None } } impl Mul for T { type Output = T; fn mul(self, other: T) -> T { self } // no error, obviously } /// Utility macro to test linting behavior in `option_methods()` /// The lints included in `option_methods()` should not lint if the call to map is partially /// within a macro macro_rules! opt_map { ($opt:expr, $map:expr) => {($opt).map($map)}; } /// Checks implementation of the following lints: /// * `OPTION_MAP_UNWRAP_OR` /// * `OPTION_MAP_UNWRAP_OR_ELSE` /// * `OPTION_MAP_OR_NONE` fn option_methods() { let opt = Some(1); // Check OPTION_MAP_UNWRAP_OR // single line case let _ = opt.map(|x| x + 1) .unwrap_or(0); // should lint even though this call is on a separate line // multi line cases let _ = opt.map(|x| { x + 1 } ).unwrap_or(0); let _ = opt.map(|x| x + 1) .unwrap_or({ 0 }); // single line `map(f).unwrap_or(None)` case let _ = opt.map(|x| Some(x + 1)).unwrap_or(None); // multiline `map(f).unwrap_or(None)` cases let _ = opt.map(|x| { Some(x + 1) } ).unwrap_or(None); let _ = opt .map(|x| Some(x + 1)) .unwrap_or(None); // macro case let _ = opt_map!(opt, |x| x + 1).unwrap_or(0); // should not lint // Check OPTION_MAP_UNWRAP_OR_ELSE // single line case let _ = opt.map(|x| x + 1) .unwrap_or_else(|| 0); // should lint even though this call is on a separate line // multi line cases let _ = opt.map(|x| { x + 1 } ).unwrap_or_else(|| 0); let _ = opt.map(|x| x + 1) .unwrap_or_else(|| 0 ); // macro case let _ = opt_map!(opt, |x| x + 1).unwrap_or_else(|| 0); // should not lint // Check OPTION_MAP_OR_NONE // single line case let _ = opt.map_or(None, |x| Some(x + 1)); // multi line case let _ = opt.map_or(None, |x| { Some(x + 1) } ); } /// Checks implementation of the following lints: /// * `RESULT_MAP_UNWRAP_OR_ELSE` fn result_methods() { let res: Result = Ok(1); // Check RESULT_MAP_UNWRAP_OR_ELSE // single line case let _ = res.map(|x| x + 1) .unwrap_or_else(|e| 0); // should lint even though this call is on a separate line // multi line cases let _ = res.map(|x| { x + 1 } ).unwrap_or_else(|e| 0); let _ = res.map(|x| x + 1) .unwrap_or_else(|e| 0 ); // macro case let _ = opt_map!(res, |x| x + 1).unwrap_or_else(|e| 0); // should not lint } /// Struct to generate false positives for things with .iter() #[derive(Copy, Clone)] struct HasIter; impl HasIter { fn iter(self) -> IteratorFalsePositives { IteratorFalsePositives { foo: 0 } } fn iter_mut(self) -> IteratorFalsePositives { IteratorFalsePositives { foo: 0 } } } /// Struct to generate false positive for Iterator-based lints #[derive(Copy, Clone)] struct IteratorFalsePositives { foo: u32, } impl IteratorFalsePositives { fn filter(self) -> IteratorFalsePositives { self } fn next(self) -> IteratorFalsePositives { self } fn find(self) -> Option { Some(self.foo) } fn position(self) -> Option { Some(self.foo) } fn rposition(self) -> Option { Some(self.foo) } fn nth(self, n: usize) -> Option { Some(self.foo) } fn skip(self, _: usize) -> IteratorFalsePositives { self } } /// Checks implementation of `FILTER_NEXT` lint fn filter_next() { let v = vec![3, 2, 1, 0, -1, -2, -3]; // check single-line case let _ = v.iter().filter(|&x| *x < 0).next(); // check multi-line case let _ = v.iter().filter(|&x| { *x < 0 } ).next(); // check that we don't lint if the caller is not an Iterator let foo = IteratorFalsePositives { foo: 0 }; let _ = foo.filter().next(); } /// Checks implementation of `SEARCH_IS_SOME` lint fn search_is_some() { let v = vec![3, 2, 1, 0, -1, -2, -3]; // check `find().is_some()`, single-line let _ = v.iter().find(|&x| *x < 0).is_some(); // check `find().is_some()`, multi-line let _ = v.iter().find(|&x| { *x < 0 } ).is_some(); // check `position().is_some()`, single-line let _ = v.iter().position(|&x| x < 0).is_some(); // check `position().is_some()`, multi-line let _ = v.iter().position(|&x| { x < 0 } ).is_some(); // check `rposition().is_some()`, single-line let _ = v.iter().rposition(|&x| x < 0).is_some(); // check `rposition().is_some()`, multi-line let _ = v.iter().rposition(|&x| { x < 0 } ).is_some(); // check that we don't lint if the caller is not an Iterator let foo = IteratorFalsePositives { foo: 0 }; let _ = foo.find().is_some(); let _ = foo.position().is_some(); let _ = foo.rposition().is_some(); } /// Checks implementation of the `OR_FUN_CALL` lint fn or_fun_call() { struct Foo; impl Foo { fn new() -> Foo { Foo } } enum Enum { A(i32), } const fn make_const(i: i32) -> i32 { i } fn make() -> T { unimplemented!(); } let with_enum = Some(Enum::A(1)); with_enum.unwrap_or(Enum::A(5)); let with_const_fn = Some(1); with_const_fn.unwrap_or(make_const(5)); let with_constructor = Some(vec![1]); with_constructor.unwrap_or(make()); let with_new = Some(vec![1]); with_new.unwrap_or(Vec::new()); let with_const_args = Some(vec![1]); with_const_args.unwrap_or(Vec::with_capacity(12)); let with_err : Result<_, ()> = Ok(vec![1]); with_err.unwrap_or(make()); let with_err_args : Result<_, ()> = Ok(vec![1]); with_err_args.unwrap_or(Vec::with_capacity(12)); let with_default_trait = Some(1); with_default_trait.unwrap_or(Default::default()); let with_default_type = Some(1); with_default_type.unwrap_or(u64::default()); let with_vec = Some(vec![1]); with_vec.unwrap_or(vec![]); // FIXME #944: ~|SUGGESTION with_vec.unwrap_or_else(|| vec![]); let without_default = Some(Foo); without_default.unwrap_or(Foo::new()); let mut map = HashMap::::new(); map.entry(42).or_insert(String::new()); let mut btree = BTreeMap::::new(); btree.entry(42).or_insert(String::new()); let stringy = Some(String::from("")); let _ = stringy.unwrap_or("".to_owned()); } /// Checks implementation of the `EXPECT_FUN_CALL` lint fn expect_fun_call() { struct Foo; impl Foo { fn new() -> Self { Foo } fn expect(&self, msg: &str) { panic!("{}", msg) } } let with_some = Some("value"); with_some.expect("error"); let with_none: Option = None; with_none.expect("error"); let error_code = 123_i32; let with_none_and_format: Option = None; with_none_and_format.expect(&format!("Error {}: fake error", error_code)); let with_none_and_as_str: Option = None; with_none_and_as_str.expect(format!("Error {}: fake error", error_code).as_str()); let with_ok: Result<(), ()> = Ok(()); with_ok.expect("error"); let with_err: Result<(), ()> = Err(()); with_err.expect("error"); let error_code = 123_i32; let with_err_and_format: Result<(), ()> = Err(()); with_err_and_format.expect(&format!("Error {}: fake error", error_code)); let with_err_and_as_str: Result<(), ()> = Err(()); with_err_and_as_str.expect(format!("Error {}: fake error", error_code).as_str()); let with_dummy_type = Foo::new(); with_dummy_type.expect("another test string"); let with_dummy_type_and_format = Foo::new(); with_dummy_type_and_format.expect(&format!("Error {}: fake error", error_code)); let with_dummy_type_and_as_str = Foo::new(); with_dummy_type_and_as_str.expect(format!("Error {}: fake error", error_code).as_str()); //Issue #2979 - this should not lint let msg = "bar"; Some("foo").expect(msg); } /// Checks implementation of `ITER_NTH` lint fn iter_nth() { let mut some_vec = vec![0, 1, 2, 3]; let mut boxed_slice: Box<[u8]> = Box::new([0, 1, 2, 3]); let mut some_vec_deque: VecDeque<_> = some_vec.iter().cloned().collect(); { // Make sure we lint `.iter()` for relevant types let bad_vec = some_vec.iter().nth(3); let bad_slice = &some_vec[..].iter().nth(3); let bad_boxed_slice = boxed_slice.iter().nth(3); let bad_vec_deque = some_vec_deque.iter().nth(3); } { // Make sure we lint `.iter_mut()` for relevant types let bad_vec = some_vec.iter_mut().nth(3); } { let bad_slice = &some_vec[..].iter_mut().nth(3); } { let bad_vec_deque = some_vec_deque.iter_mut().nth(3); } // Make sure we don't lint for non-relevant types let false_positive = HasIter; let ok = false_positive.iter().nth(3); let ok_mut = false_positive.iter_mut().nth(3); } /// Checks implementation of `ITER_SKIP_NEXT` lint fn iter_skip_next() { let mut some_vec = vec![0, 1, 2, 3]; let _ = some_vec.iter().skip(42).next(); let _ = some_vec.iter().cycle().skip(42).next(); let _ = (1..10).skip(10).next(); let _ = &some_vec[..].iter().skip(3).next(); let foo = IteratorFalsePositives { foo : 0 }; let _ = foo.skip(42).next(); let _ = foo.filter().skip(42).next(); } #[allow(clippy::similar_names)] fn main() { let opt = Some(0); let _ = opt.unwrap(); }