use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass}; use rustc::hir::*; use rustc::hir::intravisit::*; use syntax::ast::{LitKind, NodeId, DUMMY_NODE_ID}; use syntax::codemap::{dummy_spanned, Span, DUMMY_SP}; use syntax::util::ThinVec; use utils::{in_macro, snippet_opt, span_lint_and_then, SpanlessEq}; /// **What it does:** Checks for boolean expressions that can be written more /// concisely. /// /// **Why is this bad?** Readability of boolean expressions suffers from /// unnecessary duplication. /// /// **Known problems:** Ignores short circuiting behavior of `||` and /// `&&`. Ignores `|`, `&` and `^`. /// /// **Example:** /// ```rust /// if a && true // should be: if a /// if !(a == b) // should be: if a != b /// ``` declare_lint! { pub NONMINIMAL_BOOL, Allow, "boolean expressions that can be written more concisely" } /// **What it does:** Checks for boolean expressions that contain terminals that /// can be eliminated. /// /// **Why is this bad?** This is most likely a logic bug. /// /// **Known problems:** Ignores short circuiting behavior. /// /// **Example:** /// ```rust /// if a && b || a { ... } /// ``` /// The `b` is unnecessary, the expression is equivalent to `if a`. declare_lint! { pub LOGIC_BUG, Warn, "boolean expressions that contain terminals which can be eliminated" } // For each pairs, both orders are considered. const METHODS_WITH_NEGATION: [(&str, &str); 2] = [ ("is_some", "is_none"), ("is_err", "is_ok"), ]; #[derive(Copy, Clone)] pub struct NonminimalBool; impl LintPass for NonminimalBool { fn get_lints(&self) -> LintArray { lint_array!(NONMINIMAL_BOOL, LOGIC_BUG) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonminimalBool { fn check_fn( &mut self, cx: &LateContext<'a, 'tcx>, _: intravisit::FnKind<'tcx>, _: &'tcx FnDecl, body: &'tcx Body, _: Span, _: NodeId, ) { NonminimalBoolVisitor { cx: cx }.visit_body(body) } } struct NonminimalBoolVisitor<'a, 'tcx: 'a> { cx: &'a LateContext<'a, 'tcx>, } use quine_mc_cluskey::Bool; struct Hir2Qmm<'a, 'tcx: 'a, 'v> { terminals: Vec<&'v Expr>, cx: &'a LateContext<'a, 'tcx>, } impl<'a, 'tcx, 'v> Hir2Qmm<'a, 'tcx, 'v> { fn extract(&mut self, op: BinOp_, a: &[&'v Expr], mut v: Vec) -> Result, String> { for a in a { if let ExprBinary(binop, ref lhs, ref rhs) = a.node { if binop.node == op { v = self.extract(op, &[lhs, rhs], v)?; continue; } } v.push(self.run(a)?); } Ok(v) } fn run(&mut self, e: &'v Expr) -> Result { // prevent folding of `cfg!` macros and the like if !in_macro(e.span) { match e.node { ExprUnary(UnNot, ref inner) => return Ok(Bool::Not(box self.run(inner)?)), ExprBinary(binop, ref lhs, ref rhs) => match binop.node { BiOr => return Ok(Bool::Or(self.extract(BiOr, &[lhs, rhs], Vec::new())?)), BiAnd => return Ok(Bool::And(self.extract(BiAnd, &[lhs, rhs], Vec::new())?)), _ => (), }, ExprLit(ref lit) => match lit.node { LitKind::Bool(true) => return Ok(Bool::True), LitKind::Bool(false) => return Ok(Bool::False), _ => (), }, _ => (), } } for (n, expr) in self.terminals.iter().enumerate() { if SpanlessEq::new(self.cx).ignore_fn().eq_expr(e, expr) { #[allow(cast_possible_truncation)] return Ok(Bool::Term(n as u8)); } let negated = match e.node { ExprBinary(binop, ref lhs, ref rhs) => { let mk_expr = |op| { Expr { id: DUMMY_NODE_ID, hir_id: DUMMY_HIR_ID, span: DUMMY_SP, attrs: ThinVec::new(), node: ExprBinary(dummy_spanned(op), lhs.clone(), rhs.clone()), } }; match binop.node { BiEq => mk_expr(BiNe), BiNe => mk_expr(BiEq), BiGt => mk_expr(BiLe), BiGe => mk_expr(BiLt), BiLt => mk_expr(BiGe), BiLe => mk_expr(BiGt), _ => continue, } }, _ => continue, }; if SpanlessEq::new(self.cx).ignore_fn().eq_expr(&negated, expr) { #[allow(cast_possible_truncation)] return Ok(Bool::Not(Box::new(Bool::Term(n as u8)))); } } let n = self.terminals.len(); self.terminals.push(e); if n < 32 { #[allow(cast_possible_truncation)] Ok(Bool::Term(n as u8)) } else { Err("too many literals".to_owned()) } } } struct SuggestContext<'a, 'tcx: 'a, 'v> { terminals: &'v [&'v Expr], cx: &'a LateContext<'a, 'tcx>, output: String, simplified: bool, } impl<'a, 'tcx, 'v> SuggestContext<'a, 'tcx, 'v> { fn snip(&self, e: &Expr) -> Option { snippet_opt(self.cx, e.span) } fn simplify_not(&self, expr: &Expr) -> Option { match expr.node { ExprBinary(binop, ref lhs, ref rhs) => { match binop.node { BiEq => Some(" != "), BiNe => Some(" == "), BiLt => Some(" >= "), BiGt => Some(" <= "), BiLe => Some(" > "), BiGe => Some(" < "), _ => None, }.and_then(|op| Some(format!("{}{}{}", self.snip(lhs)?, op, self.snip(rhs)?))) }, ExprMethodCall(ref path, _, ref args) if args.len() == 1 => { METHODS_WITH_NEGATION .iter().cloned() .flat_map(|(a, b)| vec![(a, b), (b, a)]) .find(|&(a, _)| a == path.name.as_str()) .and_then(|(_, neg_method)| Some(format!("{}.{}()", self.snip(&args[0])?, neg_method))) }, _ => None, } } fn recurse(&mut self, suggestion: &Bool) -> Option<()> { use quine_mc_cluskey::Bool::*; match *suggestion { True => { self.output.push_str("true"); }, False => { self.output.push_str("false"); }, Not(ref inner) => match **inner { And(_) | Or(_) => { self.output.push('!'); self.output.push('('); self.recurse(inner); self.output.push(')'); }, Term(n) => { let terminal = self.terminals[n as usize]; if let Some(str) = self.simplify_not(terminal) { self.simplified = true; self.output.push_str(&str) } else { self.output.push('!'); let snip = self.snip(terminal)?; self.output.push_str(&snip); } }, True | False | Not(_) => { self.output.push('!'); self.recurse(inner)?; }, }, And(ref v) => { for (index, inner) in v.iter().enumerate() { if index > 0 { self.output.push_str(" && "); } if let Or(_) = *inner { self.output.push('('); self.recurse(inner); self.output.push(')'); } else { self.recurse(inner); } } }, Or(ref v) => { for (index, inner) in v.iter().enumerate() { if index > 0 { self.output.push_str(" || "); } self.recurse(inner); } }, Term(n) => { let snip = self.snip(self.terminals[n as usize])?; self.output.push_str(&snip); }, } Some(()) } } // The boolean part of the return indicates whether some simplifications have been applied. fn suggest(cx: &LateContext, suggestion: &Bool, terminals: &[&Expr]) -> (String, bool) { let mut suggest_context = SuggestContext { terminals: terminals, cx: cx, output: String::new(), simplified: false, }; suggest_context.recurse(suggestion); (suggest_context.output, suggest_context.simplified) } fn simple_negate(b: Bool) -> Bool { use quine_mc_cluskey::Bool::*; match b { True => False, False => True, t @ Term(_) => Not(Box::new(t)), And(mut v) => { for el in &mut v { *el = simple_negate(::std::mem::replace(el, True)); } Or(v) }, Or(mut v) => { for el in &mut v { *el = simple_negate(::std::mem::replace(el, True)); } And(v) }, Not(inner) => *inner, } } #[derive(Default)] struct Stats { terminals: [usize; 32], negations: usize, ops: usize, } fn terminal_stats(b: &Bool) -> Stats { fn recurse(b: &Bool, stats: &mut Stats) { match *b { True | False => stats.ops += 1, Not(ref inner) => { match **inner { And(_) | Or(_) => stats.ops += 1, // brackets are also operations _ => stats.negations += 1, } recurse(inner, stats); }, And(ref v) | Or(ref v) => { stats.ops += v.len() - 1; for inner in v { recurse(inner, stats); } }, Term(n) => stats.terminals[n as usize] += 1, } } use quine_mc_cluskey::Bool::*; let mut stats = Stats::default(); recurse(b, &mut stats); stats } impl<'a, 'tcx> NonminimalBoolVisitor<'a, 'tcx> { fn bool_expr(&self, e: &Expr) { let mut h2q = Hir2Qmm { terminals: Vec::new(), cx: self.cx, }; if let Ok(expr) = h2q.run(e) { if h2q.terminals.len() > 8 { // QMC has exponentially slow behavior as the number of terminals increases // 8 is reasonable, it takes approximately 0.2 seconds. // See #825 return; } let stats = terminal_stats(&expr); let mut simplified = expr.simplify(); for simple in Bool::Not(Box::new(expr.clone())).simplify() { match simple { Bool::Not(_) | Bool::True | Bool::False => {}, _ => simplified.push(Bool::Not(Box::new(simple.clone()))), } let simple_negated = simple_negate(simple); if simplified.iter().any(|s| *s == simple_negated) { continue; } simplified.push(simple_negated); } let mut improvements = Vec::new(); 'simplified: for suggestion in &simplified { let simplified_stats = terminal_stats(suggestion); let mut improvement = false; for i in 0..32 { // ignore any "simplifications" that end up requiring a terminal more often // than in the original expression if stats.terminals[i] < simplified_stats.terminals[i] { continue 'simplified; } if stats.terminals[i] != 0 && simplified_stats.terminals[i] == 0 { span_lint_and_then( self.cx, LOGIC_BUG, e.span, "this boolean expression contains a logic bug", |db| { db.span_help( h2q.terminals[i].span, "this expression can be optimized out by applying boolean operations to the \ outer expression", ); db.span_suggestion( e.span, "it would look like the following", suggest(self.cx, suggestion, &h2q.terminals).0, ); }, ); // don't also lint `NONMINIMAL_BOOL` return; } // if the number of occurrences of a terminal decreases or any of the stats // decreases while none increases improvement |= (stats.terminals[i] > simplified_stats.terminals[i]) || (stats.negations > simplified_stats.negations && stats.ops == simplified_stats.ops) || (stats.ops > simplified_stats.ops && stats.negations == simplified_stats.negations); } if improvement { improvements.push(suggestion); } } let nonminimal_bool_lint = |suggestions| { span_lint_and_then( self.cx, NONMINIMAL_BOOL, e.span, "this boolean expression can be simplified", |db| { db.span_suggestions(e.span, "try", suggestions); }, ); }; if improvements.is_empty() { let suggest = suggest(self.cx, &expr, &h2q.terminals); if suggest.1 { nonminimal_bool_lint(vec![suggest.0]) } } else { nonminimal_bool_lint( improvements .into_iter() .map(|suggestion| suggest(self.cx, suggestion, &h2q.terminals).0) .collect() ); } } } } impl<'a, 'tcx> Visitor<'tcx> for NonminimalBoolVisitor<'a, 'tcx> { fn visit_expr(&mut self, e: &'tcx Expr) { if in_macro(e.span) { return; } match e.node { ExprBinary(binop, _, _) if binop.node == BiOr || binop.node == BiAnd => self.bool_expr(e), ExprUnary(UnNot, ref inner) => if self.cx.tables.node_types()[inner.hir_id].is_bool() { self.bool_expr(e); } else { walk_expr(self, e); }, _ => walk_expr(self, e), } } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } }