use reexport::*; use rustc::lint::*; use rustc::hir::def::Def; use rustc::hir::*; use rustc::hir::intravisit::*; use std::collections::{HashMap, HashSet}; use syntax::codemap::Span; use utils::{in_external_macro, last_path_segment, span_lint}; use syntax::symbol::keywords; /// **What it does:** Checks for lifetime annotations which can be removed by /// relying on lifetime elision. /// /// **Why is this bad?** The additional lifetimes make the code look more /// complicated, while there is nothing out of the ordinary going on. Removing /// them leads to more readable code. /// /// **Known problems:** Potential false negatives: we bail out if the function /// has a `where` clause where lifetimes are mentioned. /// /// **Example:** /// ```rust /// fn in_and_out<'a>(x: &'a u8, y: u8) -> &'a u8 { x } /// ``` declare_clippy_lint! { pub NEEDLESS_LIFETIMES, complexity, "using explicit lifetimes for references in function arguments when elision rules \ would allow omitting them" } /// **What it does:** Checks for lifetimes in generics that are never used /// anywhere else. /// /// **Why is this bad?** The additional lifetimes make the code look more /// complicated, while there is nothing out of the ordinary going on. Removing /// them leads to more readable code. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// fn unused_lifetime<'a>(x: u8) { .. } /// ``` declare_clippy_lint! { pub UNUSED_LIFETIMES, complexity, "unused lifetimes in function definitions" } #[derive(Copy, Clone)] pub struct LifetimePass; impl LintPass for LifetimePass { fn get_lints(&self) -> LintArray { lint_array!(NEEDLESS_LIFETIMES, UNUSED_LIFETIMES) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for LifetimePass { fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) { if let ItemFn(ref decl, _, _, _, ref generics, id) = item.node { check_fn_inner(cx, decl, Some(id), generics, item.span); } } fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx ImplItem) { if let ImplItemKind::Method(ref sig, id) = item.node { check_fn_inner(cx, &sig.decl, Some(id), &item.generics, item.span); } } fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx TraitItem) { if let TraitItemKind::Method(ref sig, ref body) = item.node { let body = match *body { TraitMethod::Required(_) => None, TraitMethod::Provided(id) => Some(id), }; check_fn_inner(cx, &sig.decl, body, &item.generics, item.span); } } } /// The lifetime of a &-reference. #[derive(PartialEq, Eq, Hash, Debug)] enum RefLt { Unnamed, Static, Named(Name), } fn check_fn_inner<'a, 'tcx>( cx: &LateContext<'a, 'tcx>, decl: &'tcx FnDecl, body: Option, generics: &'tcx Generics, span: Span, ) { if in_external_macro(cx, span) || has_where_lifetimes(cx, &generics.where_clause) { return; } let mut bounds_lts = Vec::new(); for typ in generics.ty_params() { for bound in &typ.bounds { if let TraitTyParamBound(ref trait_ref, _) = *bound { let params = &trait_ref .trait_ref .path .segments .last() .expect("a path must have at least one segment") .parameters; if let Some(ref params) = *params { for bound in ¶ms.lifetimes { if bound.name.name() != "'static" && !bound.is_elided() { return; } bounds_lts.push(bound); } } } } } if could_use_elision(cx, decl, body, &generics.params, bounds_lts) { span_lint( cx, NEEDLESS_LIFETIMES, span, "explicit lifetimes given in parameter types where they could be elided", ); } report_extra_lifetimes(cx, decl, generics); } fn could_use_elision<'a, 'tcx: 'a>( cx: &LateContext<'a, 'tcx>, func: &'tcx FnDecl, body: Option, named_generics: &'tcx [GenericParam], bounds_lts: Vec<&'tcx Lifetime>, ) -> bool { // There are two scenarios where elision works: // * no output references, all input references have different LT // * output references, exactly one input reference with same LT // All lifetimes must be unnamed, 'static or defined without bounds on the // level of the current item. // check named LTs let allowed_lts = allowed_lts_from(named_generics); // these will collect all the lifetimes for references in arg/return types let mut input_visitor = RefVisitor::new(cx); let mut output_visitor = RefVisitor::new(cx); // extract lifetimes in input argument types for arg in &func.inputs { input_visitor.visit_ty(arg); } // extract lifetimes in output type if let Return(ref ty) = func.output { output_visitor.visit_ty(ty); } let input_lts = match input_visitor.into_vec() { Some(lts) => lts_from_bounds(lts, bounds_lts.into_iter()), None => return false, }; let output_lts = match output_visitor.into_vec() { Some(val) => val, None => return false, }; if let Some(body_id) = body { let mut checker = BodyLifetimeChecker { lifetimes_used_in_body: false, }; checker.visit_expr(&cx.tcx.hir.body(body_id).value); if checker.lifetimes_used_in_body { return false; } } // check for lifetimes from higher scopes for lt in input_lts.iter().chain(output_lts.iter()) { if !allowed_lts.contains(lt) { return false; } } // no input lifetimes? easy case! if input_lts.is_empty() { false } else if output_lts.is_empty() { // no output lifetimes, check distinctness of input lifetimes // only unnamed and static, ok let unnamed_and_static = input_lts .iter() .all(|lt| *lt == RefLt::Unnamed || *lt == RefLt::Static); if unnamed_and_static { return false; } // we have no output reference, so we only need all distinct lifetimes input_lts.len() == unique_lifetimes(&input_lts) } else { // we have output references, so we need one input reference, // and all output lifetimes must be the same if unique_lifetimes(&output_lts) > 1 { return false; } if input_lts.len() == 1 { match (&input_lts[0], &output_lts[0]) { (&RefLt::Named(n1), &RefLt::Named(n2)) if n1 == n2 => true, (&RefLt::Named(_), &RefLt::Unnamed) => true, _ => false, /* already elided, different named lifetimes * or something static going on */ } } else { false } } } fn allowed_lts_from(named_generics: &[GenericParam]) -> HashSet { let mut allowed_lts = HashSet::new(); for par in named_generics.iter() { if let GenericParam::Lifetime(ref lt) = *par { if lt.bounds.is_empty() { allowed_lts.insert(RefLt::Named(lt.lifetime.name.name())); } } } allowed_lts.insert(RefLt::Unnamed); allowed_lts.insert(RefLt::Static); allowed_lts } fn lts_from_bounds<'a, T: Iterator>(mut vec: Vec, bounds_lts: T) -> Vec { for lt in bounds_lts { if lt.name.name() != "'static" { vec.push(RefLt::Named(lt.name.name())); } } vec } /// Number of unique lifetimes in the given vector. fn unique_lifetimes(lts: &[RefLt]) -> usize { lts.iter().collect::>().len() } /// A visitor usable for `rustc_front::visit::walk_ty()`. struct RefVisitor<'a, 'tcx: 'a> { cx: &'a LateContext<'a, 'tcx>, lts: Vec, abort: bool, } impl<'v, 't> RefVisitor<'v, 't> { fn new(cx: &'v LateContext<'v, 't>) -> Self { Self { cx, lts: Vec::new(), abort: false, } } fn record(&mut self, lifetime: &Option) { if let Some(ref lt) = *lifetime { if lt.name.name() == "'static" { self.lts.push(RefLt::Static); } else if lt.is_elided() { self.lts.push(RefLt::Unnamed); } else { self.lts.push(RefLt::Named(lt.name.name())); } } else { self.lts.push(RefLt::Unnamed); } } fn into_vec(self) -> Option> { if self.abort { None } else { Some(self.lts) } } fn collect_anonymous_lifetimes(&mut self, qpath: &QPath, ty: &Ty) { if let Some(ref last_path_segment) = last_path_segment(qpath).parameters { if !last_path_segment.parenthesized && last_path_segment.lifetimes.is_empty() { let hir_id = self.cx.tcx.hir.node_to_hir_id(ty.id); match self.cx.tables.qpath_def(qpath, hir_id) { Def::TyAlias(def_id) | Def::Struct(def_id) => { let generics = self.cx.tcx.generics_of(def_id); for _ in generics.regions.as_slice() { self.record(&None); } }, Def::Trait(def_id) => { let trait_def = self.cx.tcx.trait_def(def_id); for _ in &self.cx.tcx.generics_of(trait_def.def_id).regions { self.record(&None); } }, _ => (), } } } } } impl<'a, 'tcx> Visitor<'tcx> for RefVisitor<'a, 'tcx> { // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { self.record(&Some(*lifetime)); } fn visit_ty(&mut self, ty: &'tcx Ty) { match ty.node { TyRptr(ref lt, _) if lt.is_elided() => { self.record(&None); }, TyPath(ref path) => { self.collect_anonymous_lifetimes(path, ty); }, TyImplTraitExistential(ref exist_ty, _) => { for bound in &exist_ty.bounds { if let RegionTyParamBound(_) = *bound { self.record(&None); } } } TyTraitObject(ref bounds, ref lt) => { if !lt.is_elided() { self.abort = true; } for bound in bounds { self.visit_poly_trait_ref(bound, TraitBoundModifier::None); } return; }, _ => (), } walk_ty(self, ty); } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } } /// Are any lifetimes mentioned in the `where` clause? If yes, we don't try to /// reason about elision. fn has_where_lifetimes<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, where_clause: &'tcx WhereClause) -> bool { for predicate in &where_clause.predicates { match *predicate { WherePredicate::RegionPredicate(..) => return true, WherePredicate::BoundPredicate(ref pred) => { // a predicate like F: Trait or F: for<'a> Trait<'a> let mut visitor = RefVisitor::new(cx); // walk the type F, it may not contain LT refs walk_ty(&mut visitor, &pred.bounded_ty); if !visitor.lts.is_empty() { return true; } // if the bounds define new lifetimes, they are fine to occur let allowed_lts = allowed_lts_from(&pred.bound_generic_params); // now walk the bounds for bound in pred.bounds.iter() { walk_ty_param_bound(&mut visitor, bound); } // and check that all lifetimes are allowed match visitor.into_vec() { None => return false, Some(lts) => for lt in lts { if !allowed_lts.contains(<) { return true; } }, } }, WherePredicate::EqPredicate(ref pred) => { let mut visitor = RefVisitor::new(cx); walk_ty(&mut visitor, &pred.lhs_ty); walk_ty(&mut visitor, &pred.rhs_ty); if !visitor.lts.is_empty() { return true; } }, } } false } struct LifetimeChecker { map: HashMap, } impl<'tcx> Visitor<'tcx> for LifetimeChecker { // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { self.map.remove(&lifetime.name.name()); } fn visit_generic_param(&mut self, param: &'tcx GenericParam) { // don't actually visit `<'a>` or `<'a: 'b>` // we've already visited the `'a` declarations and // don't want to spuriously remove them // `'b` in `'a: 'b` is useless unless used elsewhere in // a non-lifetime bound if param.is_type_param() { walk_generic_param(self, param) } } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } } fn report_extra_lifetimes<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, func: &'tcx FnDecl, generics: &'tcx Generics) { let hs = generics .lifetimes() .map(|lt| (lt.lifetime.name.name(), lt.lifetime.span)) .collect(); let mut checker = LifetimeChecker { map: hs }; walk_generics(&mut checker, generics); walk_fn_decl(&mut checker, func); for &v in checker.map.values() { span_lint(cx, UNUSED_LIFETIMES, v, "this lifetime isn't used in the function definition"); } } struct BodyLifetimeChecker { lifetimes_used_in_body: bool, } impl<'tcx> Visitor<'tcx> for BodyLifetimeChecker { // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { if lifetime.name.name() != keywords::Invalid.name() && lifetime.name.name() != "'static" { self.lifetimes_used_in_body = true; } } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } }