use rustc::lint::*; use rustc_front::hir::*; use reexport::*; use rustc_front::visit::{Visitor, walk_expr}; use rustc::middle::ty; use consts::{constant_simple, Constant}; use std::collections::HashSet; use utils::{snippet, span_lint, get_parent_expr, match_trait_method, match_type, in_external_macro, expr_block, span_help_and_lint}; use utils::{VEC_PATH, LL_PATH}; declare_lint!{ pub NEEDLESS_RANGE_LOOP, Warn, "for-looping over a range of indices where an iterator over items would do" } declare_lint!{ pub EXPLICIT_ITER_LOOP, Warn, "for-looping over `_.iter()` or `_.iter_mut()` when `&_` or `&mut _` would do" } declare_lint!{ pub ITER_NEXT_LOOP, Warn, "for-looping over `_.next()` which is probably not intended" } declare_lint!{ pub WHILE_LET_LOOP, Warn, "`loop { if let { ... } else break }` can be written as a `while let` loop" } declare_lint!{ pub UNUSED_COLLECT, Warn, "`collect()`ing an iterator without using the result; this is usually better \ written as a for loop" } declare_lint!{ pub REVERSE_RANGE_LOOP, Warn, "Iterating over an empty range, such as `10..0` or `5..5`" } #[derive(Copy, Clone)] pub struct LoopsPass; impl LintPass for LoopsPass { fn get_lints(&self) -> LintArray { lint_array!(NEEDLESS_RANGE_LOOP, EXPLICIT_ITER_LOOP, ITER_NEXT_LOOP, WHILE_LET_LOOP, UNUSED_COLLECT, REVERSE_RANGE_LOOP) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let Some((pat, arg, body)) = recover_for_loop(expr) { // check for looping over a range and then indexing a sequence with it // -> the iteratee must be a range literal if let ExprRange(Some(ref l), _) = arg.node { // Range should start with `0` if let ExprLit(ref lit) = l.node { if let LitInt(0, _) = lit.node { // the var must be a single name if let PatIdent(_, ref ident, _) = pat.node { let mut visitor = VarVisitor { cx: cx, var: ident.node.name, indexed: HashSet::new(), nonindex: false }; walk_expr(&mut visitor, body); // linting condition: we only indexed one variable if visitor.indexed.len() == 1 { let indexed = visitor.indexed.into_iter().next().expect( "Len was nonzero, but no contents found"); if visitor.nonindex { span_lint(cx, NEEDLESS_RANGE_LOOP, expr.span, &format!( "the loop variable `{}` is used to index `{}`. Consider using \ `for ({}, item) in {}.iter().enumerate()` or similar iterators", ident.node.name, indexed, ident.node.name, indexed)); } else { span_lint(cx, NEEDLESS_RANGE_LOOP, expr.span, &format!( "the loop variable `{}` is only used to index `{}`. \ Consider using `for item in &{}` or similar iterators", ident.node.name, indexed, indexed)); } } } } } } // if this for loop is iterating over a two-sided range... if let ExprRange(Some(ref start_expr), Some(ref stop_expr)) = arg.node { // ...and both sides are compile-time constant integers... if let Some(Constant::ConstantInt(start_idx, _)) = constant_simple(start_expr) { if let Some(Constant::ConstantInt(stop_idx, _)) = constant_simple(stop_expr) { // ...and the start index is greater than the stop index, // this loop will never run. This is often confusing for developers // who think that this will iterate from the larger value to the // smaller value. if start_idx > stop_idx { span_help_and_lint(cx, REVERSE_RANGE_LOOP, expr.span, "this range is empty so this for loop will never run", &format!("Consider using `({}..{}).rev()` if you are attempting to \ iterate over this range in reverse", stop_idx, start_idx)); } else if start_idx == stop_idx { // if they are equal, it's also problematic - this loop // will never run. span_lint(cx, REVERSE_RANGE_LOOP, expr.span, "this range is empty so this for loop will never run"); } } } } if let ExprMethodCall(ref method, _, ref args) = arg.node { // just the receiver, no arguments if args.len() == 1 { let method_name = method.node.name; // check for looping over x.iter() or x.iter_mut(), could use &x or &mut x if method_name == "iter" || method_name == "iter_mut" { if is_ref_iterable_type(cx, &args[0]) { let object = snippet(cx, args[0].span, "_"); span_lint(cx, EXPLICIT_ITER_LOOP, expr.span, &format!( "it is more idiomatic to loop over `&{}{}` instead of `{}.{}()`", if method_name == "iter_mut" { "mut " } else { "" }, object, object, method_name)); } } // check for looping over Iterator::next() which is not what you want else if method_name == "next" && match_trait_method(cx, arg, &["core", "iter", "Iterator"]) { span_lint(cx, ITER_NEXT_LOOP, expr.span, "you are iterating over `Iterator::next()` which is an Option; \ this will compile but is probably not what you want"); } } } } // check for `loop { if let {} else break }` that could be `while let` // (also matches explicit "match" instead of "if let") if let ExprLoop(ref block, _) = expr.node { // extract a single expression if let Some(inner) = extract_single_expr(block) { if let ExprMatch(ref matchexpr, ref arms, ref source) = inner.node { // ensure "if let" compatible match structure match *source { MatchSource::Normal | MatchSource::IfLetDesugar{..} => if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none() && arms[1].pats.len() == 1 && arms[1].guard.is_none() && // finally, check for "break" in the second clause is_break_expr(&arms[1].body) { if in_external_macro(cx, expr.span) { return; } span_help_and_lint(cx, WHILE_LET_LOOP, expr.span, "this loop could be written as a `while let` loop", &format!("try\nwhile let {} = {} {}", snippet(cx, arms[0].pats[0].span, ".."), snippet(cx, matchexpr.span, ".."), expr_block(cx, &arms[0].body, ".."))); }, _ => () } } } } } fn check_stmt(&mut self, cx: &Context, stmt: &Stmt) { if let StmtSemi(ref expr, _) = stmt.node { if let ExprMethodCall(ref method, _, ref args) = expr.node { if args.len() == 1 && method.node.name == "collect" && match_trait_method(cx, expr, &["core", "iter", "Iterator"]) { span_lint(cx, UNUSED_COLLECT, expr.span, &format!( "you are collect()ing an iterator and throwing away the result. \ Consider using an explicit for loop to exhaust the iterator")); } } } } } /// Recover the essential nodes of a desugared for loop: /// `for pat in arg { body }` becomes `(pat, arg, body)`. fn recover_for_loop(expr: &Expr) -> Option<(&Pat, &Expr, &Expr)> { if_let_chain! { [ let ExprMatch(ref iterexpr, ref arms, _) = expr.node, let ExprCall(_, ref iterargs) = iterexpr.node, iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(), let ExprLoop(ref block, _) = arms[0].body.node, block.stmts.is_empty(), let Some(ref loopexpr) = block.expr, let ExprMatch(_, ref innerarms, MatchSource::ForLoopDesugar) = loopexpr.node, innerarms.len() == 2 && innerarms[0].pats.len() == 1, let PatEnum(_, Some(ref somepats)) = innerarms[0].pats[0].node, somepats.len() == 1 ], { return Some((&somepats[0], &iterargs[0], &innerarms[0].body)); } } None } struct VarVisitor<'v, 't: 'v> { cx: &'v Context<'v, 't>, // context reference var: Name, // var name to look for as index indexed: HashSet, // indexed variables nonindex: bool, // has the var been used otherwise? } impl<'v, 't> Visitor<'v> for VarVisitor<'v, 't> { fn visit_expr(&mut self, expr: &'v Expr) { if let ExprPath(None, ref path) = expr.node { if path.segments.len() == 1 && path.segments[0].identifier.name == self.var { // we are referencing our variable! now check if it's as an index if_let_chain! { [ let Some(parexpr) = get_parent_expr(self.cx, expr), let ExprIndex(ref seqexpr, _) = parexpr.node, let ExprPath(None, ref seqvar) = seqexpr.node, seqvar.segments.len() == 1 ], { self.indexed.insert(seqvar.segments[0].identifier.name); return; // no need to walk further } } // we are not indexing anything, record that self.nonindex = true; return; } } walk_expr(self, expr); } } /// Return true if the type of expr is one that provides IntoIterator impls /// for &T and &mut T, such as Vec. fn is_ref_iterable_type(cx: &Context, e: &Expr) -> bool { // no walk_ptrs_ty: calling iter() on a reference can make sense because it // will allow further borrows afterwards let ty = cx.tcx.expr_ty(e); is_iterable_array(ty) || match_type(cx, ty, &VEC_PATH) || match_type(cx, ty, &LL_PATH) || match_type(cx, ty, &["std", "collections", "hash", "map", "HashMap"]) || match_type(cx, ty, &["std", "collections", "hash", "set", "HashSet"]) || match_type(cx, ty, &["collections", "vec_deque", "VecDeque"]) || match_type(cx, ty, &["collections", "binary_heap", "BinaryHeap"]) || match_type(cx, ty, &["collections", "btree", "map", "BTreeMap"]) || match_type(cx, ty, &["collections", "btree", "set", "BTreeSet"]) } fn is_iterable_array(ty: ty::Ty) -> bool { //IntoIterator is currently only implemented for array sizes <= 32 in rustc match ty.sty { ty::TyArray(_, 0...32) => true, _ => false } } /// If block consists of a single expression (with or without semicolon), return it. fn extract_single_expr(block: &Block) -> Option<&Expr> { match (&block.stmts.len(), &block.expr) { (&1, &None) => match block.stmts[0].node { StmtExpr(ref expr, _) | StmtSemi(ref expr, _) => Some(expr), _ => None, }, (&0, &Some(ref expr)) => Some(expr), _ => None } } /// Return true if expr contains a single break expr (maybe within a block). fn is_break_expr(expr: &Expr) -> bool { match expr.node { ExprBreak(None) => true, ExprBlock(ref b) => match extract_single_expr(b) { Some(ref subexpr) => is_break_expr(subexpr), None => false, }, _ => false, } }