use crate::utils::{get_parent_expr, span_lint, span_note_and_lint}; use if_chain::if_chain; use rustc::hir::intravisit::{walk_expr, NestedVisitorMap, Visitor}; use rustc::hir::*; use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass}; use rustc::ty; use rustc::{declare_tool_lint, lint_array}; use syntax::ast; declare_clippy_lint! { /// **What it does:** Checks for a read and a write to the same variable where /// whether the read occurs before or after the write depends on the evaluation /// order of sub-expressions. /// /// **Why is this bad?** It is often confusing to read. In addition, the /// sub-expression evaluation order for Rust is not well documented. /// /// **Known problems:** Code which intentionally depends on the evaluation /// order, or which is correct for any evaluation order. /// /// **Example:** /// ```rust /// let mut x = 0; /// let a = { /// x = 1; /// 1 /// } + x; /// // Unclear whether a is 1 or 2. /// ``` pub EVAL_ORDER_DEPENDENCE, complexity, "whether a variable read occurs before a write depends on sub-expression evaluation order" } declare_clippy_lint! { /// **What it does:** Checks for diverging calls that are not match arms or /// statements. /// /// **Why is this bad?** It is often confusing to read. In addition, the /// sub-expression evaluation order for Rust is not well documented. /// /// **Known problems:** Someone might want to use `some_bool || panic!()` as a /// shorthand. /// /// **Example:** /// ```rust /// let a = b() || panic!() || c(); /// // `c()` is dead, `panic!()` is only called if `b()` returns `false` /// let x = (a, b, c, panic!()); /// // can simply be replaced by `panic!()` /// ``` pub DIVERGING_SUB_EXPRESSION, complexity, "whether an expression contains a diverging sub expression" } #[derive(Copy, Clone)] pub struct EvalOrderDependence; impl LintPass for EvalOrderDependence { fn get_lints(&self) -> LintArray { lint_array!(EVAL_ORDER_DEPENDENCE, DIVERGING_SUB_EXPRESSION) } fn name(&self) -> &'static str { "EvalOrderDependence" } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for EvalOrderDependence { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { // Find a write to a local variable. match expr.node { ExprKind::Assign(ref lhs, _) | ExprKind::AssignOp(_, ref lhs, _) => { if let ExprKind::Path(ref qpath) = lhs.node { if let QPath::Resolved(_, ref path) = *qpath { if path.segments.len() == 1 { if let def::Def::Local(var) = cx.tables.qpath_def(qpath, lhs.hir_id) { let mut visitor = ReadVisitor { cx, var, write_expr: expr, last_expr: expr, }; check_for_unsequenced_reads(&mut visitor); } } } } }, _ => {}, } } fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, stmt: &'tcx Stmt) { match stmt.node { StmtKind::Local(ref local) => { if let Local { init: Some(ref e), .. } = **local { DivergenceVisitor { cx }.visit_expr(e); } }, StmtKind::Expr(ref e) | StmtKind::Semi(ref e) => DivergenceVisitor { cx }.maybe_walk_expr(e), StmtKind::Item(..) => {}, } } } struct DivergenceVisitor<'a, 'tcx: 'a> { cx: &'a LateContext<'a, 'tcx>, } impl<'a, 'tcx> DivergenceVisitor<'a, 'tcx> { fn maybe_walk_expr(&mut self, e: &'tcx Expr) { match e.node { ExprKind::Closure(.., _) => {}, ExprKind::Match(ref e, ref arms, _) => { self.visit_expr(e); for arm in arms { if let Some(ref guard) = arm.guard { match guard { Guard::If(if_expr) => self.visit_expr(if_expr), } } // make sure top level arm expressions aren't linted self.maybe_walk_expr(&*arm.body); } }, _ => walk_expr(self, e), } } fn report_diverging_sub_expr(&mut self, e: &Expr) { span_lint(self.cx, DIVERGING_SUB_EXPRESSION, e.span, "sub-expression diverges"); } } impl<'a, 'tcx> Visitor<'tcx> for DivergenceVisitor<'a, 'tcx> { fn visit_expr(&mut self, e: &'tcx Expr) { match e.node { ExprKind::Continue(_) | ExprKind::Break(_, _) | ExprKind::Ret(_) => self.report_diverging_sub_expr(e), ExprKind::Call(ref func, _) => { let typ = self.cx.tables.expr_ty(func); match typ.sty { ty::FnDef(..) | ty::FnPtr(_) => { let sig = typ.fn_sig(self.cx.tcx); if let ty::Never = self.cx.tcx.erase_late_bound_regions(&sig).output().sty { self.report_diverging_sub_expr(e); } }, _ => {}, } }, ExprKind::MethodCall(..) => { let borrowed_table = self.cx.tables; if borrowed_table.expr_ty(e).is_never() { self.report_diverging_sub_expr(e); } }, _ => { // do not lint expressions referencing objects of type `!`, as that required a // diverging expression // to begin with }, } self.maybe_walk_expr(e); } fn visit_block(&mut self, _: &'tcx Block) { // don't continue over blocks, LateLintPass already does that } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } } /// Walks up the AST from the given write expression (`vis.write_expr`) looking /// for reads to the same variable that are unsequenced relative to the write. /// /// This means reads for which there is a common ancestor between the read and /// the write such that /// /// * evaluating the ancestor necessarily evaluates both the read and the write (for example, `&x` /// and `|| x = 1` don't necessarily evaluate `x`), and /// /// * which one is evaluated first depends on the order of sub-expression evaluation. Blocks, `if`s, /// loops, `match`es, and the short-circuiting logical operators are considered to have a defined /// evaluation order. /// /// When such a read is found, the lint is triggered. fn check_for_unsequenced_reads(vis: &mut ReadVisitor<'_, '_>) { let map = &vis.cx.tcx.hir(); let mut cur_id = vis.write_expr.hir_id; loop { let parent_id = map.get_parent_node_by_hir_id(cur_id); if parent_id == cur_id { break; } let parent_node = match map.find_by_hir_id(parent_id) { Some(parent) => parent, None => break, }; let stop_early = match parent_node { Node::Expr(expr) => check_expr(vis, expr), Node::Stmt(stmt) => check_stmt(vis, stmt), Node::Item(_) => { // We reached the top of the function, stop. break; }, _ => StopEarly::KeepGoing, }; match stop_early { StopEarly::Stop => break, StopEarly::KeepGoing => {}, } cur_id = parent_id; } } /// Whether to stop early for the loop in `check_for_unsequenced_reads`. (If /// `check_expr` weren't an independent function, this would be unnecessary and /// we could just use `break`). enum StopEarly { KeepGoing, Stop, } fn check_expr<'a, 'tcx>(vis: &mut ReadVisitor<'a, 'tcx>, expr: &'tcx Expr) -> StopEarly { if expr.hir_id == vis.last_expr.hir_id { return StopEarly::KeepGoing; } match expr.node { ExprKind::Array(_) | ExprKind::Tup(_) | ExprKind::MethodCall(..) | ExprKind::Call(_, _) | ExprKind::Assign(_, _) | ExprKind::Index(_, _) | ExprKind::Repeat(_, _) | ExprKind::Struct(_, _, _) => { walk_expr(vis, expr); }, ExprKind::Binary(op, _, _) | ExprKind::AssignOp(op, _, _) => { if op.node == BinOpKind::And || op.node == BinOpKind::Or { // x && y and x || y always evaluate x first, so these are // strictly sequenced. } else { walk_expr(vis, expr); } }, ExprKind::Closure(_, _, _, _, _) => { // Either // // * `var` is defined in the closure body, in which case we've reached the top of the enclosing // function and can stop, or // // * `var` is captured by the closure, in which case, because evaluating a closure does not evaluate // its body, we don't necessarily have a write, so we need to stop to avoid generating false // positives. // // This is also the only place we need to stop early (grrr). return StopEarly::Stop; }, // All other expressions either have only one child or strictly // sequence the evaluation order of their sub-expressions. _ => {}, } vis.last_expr = expr; StopEarly::KeepGoing } fn check_stmt<'a, 'tcx>(vis: &mut ReadVisitor<'a, 'tcx>, stmt: &'tcx Stmt) -> StopEarly { match stmt.node { StmtKind::Expr(ref expr) | StmtKind::Semi(ref expr) => check_expr(vis, expr), // If the declaration is of a local variable, check its initializer // expression if it has one. Otherwise, keep going. StmtKind::Local(ref local) => local .init .as_ref() .map_or(StopEarly::KeepGoing, |expr| check_expr(vis, expr)), _ => StopEarly::KeepGoing, } } /// A visitor that looks for reads from a variable. struct ReadVisitor<'a, 'tcx: 'a> { cx: &'a LateContext<'a, 'tcx>, /// The ID of the variable we're looking for. var: ast::NodeId, /// The expressions where the write to the variable occurred (for reporting /// in the lint). write_expr: &'tcx Expr, /// The last (highest in the AST) expression we've checked, so we know not /// to recheck it. last_expr: &'tcx Expr, } impl<'a, 'tcx> Visitor<'tcx> for ReadVisitor<'a, 'tcx> { fn visit_expr(&mut self, expr: &'tcx Expr) { if expr.hir_id == self.last_expr.hir_id { return; } match expr.node { ExprKind::Path(ref qpath) => { if_chain! { if let QPath::Resolved(None, ref path) = *qpath; if path.segments.len() == 1; if let def::Def::Local(local_id) = self.cx.tables.qpath_def(qpath, expr.hir_id); if local_id == self.var; // Check that this is a read, not a write. if !is_in_assignment_position(self.cx, expr); then { span_note_and_lint( self.cx, EVAL_ORDER_DEPENDENCE, expr.span, "unsequenced read of a variable", self.write_expr.span, "whether read occurs before this write depends on evaluation order" ); } } } // We're about to descend a closure. Since we don't know when (or // if) the closure will be evaluated, any reads in it might not // occur here (or ever). Like above, bail to avoid false positives. ExprKind::Closure(_, _, _, _, _) | // We want to avoid a false positive when a variable name occurs // only to have its address taken, so we stop here. Technically, // this misses some weird cases, eg. // // ```rust // let mut x = 0; // let a = foo(&{x = 1; x}, x); // ``` // // TODO: fix this ExprKind::AddrOf(_, _) => { return; } _ => {} } walk_expr(self, expr); } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } } /// Returns `true` if `expr` is the LHS of an assignment, like `expr = ...`. fn is_in_assignment_position(cx: &LateContext<'_, '_>, expr: &Expr) -> bool { if let Some(parent) = get_parent_expr(cx, expr) { if let ExprKind::Assign(ref lhs, _) = parent.node { return lhs.hir_id == expr.hir_id; } } false }